
Green Computing Platforms

Step1. CA0602+0604: Pipeline, Superscalar and VLIW

http://archlab.naist.jp/Lectures/ARCH/ca0602_0604/ca060204e.pdf

Copyright © 2024 NAIST Y.Nakashima

1

http://arch.naist.jp/Lectures/ARCH/ca0602_0604/ca060204e_video.pdf

Download the template and submit through UNIPA.

http://archlab.naist.jp/Lectures/ARCH/ca0602/ca0602e.docx

in http://archlab.naist.jp/Lectures

2

http://archlab.naist.jp/Lectures/ARCH/ca0602/ca0602e.docx
http://archlab.naist.jp/Lectures

Modern Computing Platforms

Programmable

CPU based
High-speed Compiler

SINGLE 5stage pipeline CPU for education

MIMD/SIMD

CC-NUMA Manycore

Coalescing GPGPU

Main memory Long Vector

Coarse/CISC
4way Ring＋Cache CGLA gen2

１way Ring＋Cache CGLA gen3

FPGA based
Low-speed P&R

Coarse/RISC

Cache Memory PiM

Main memory CGRA

Mult+Accumulate Systolic Array

Fine Grained BRAM+DDR FPGA

Special HW No flexibility Analog Memory Cell CiM

20250401

3

1966 (TI ASC) Pipelining ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○

1964 (CDC6600) Super Scalar ○ ○ ○

1965 (ILLIAC IV) Vector Processor ○ ○ ○ ○ ○

1976 (QA1) VLIW ○ ○ ○ ○ ○ ○ ○

1982 (HEP) Multithreading ○ ○ ○ ○ ○ ○ ○

1982 (CMU) Systolic Array ○ ○ ○ ○

2
0
1
6
 IM

A
X

2
0
1
2
 E

M
A

X

2
0
0
8
 L

A
P

P

2
0
0
6
 O

R
O

C
H

I

1
9
9
2
 V

P
P

2
0
0
2
 H

yp
e
r T

h
re

ad
in

g

2
0
0
0
 G

P
U

1
9
9
7
 D

A
IS

Y

1
9
6
4
 S

u
p
e
r S

c
alar

1
9
6
5
 V

e
c
to

r P
ro

c
e
sso

r

1
9
7
6
 V

L
IW

1
9
8
2

M
u
ltith

re
adin

g

1
9
8
2
 C

G
R

A

(1) Parallelization in CPU core (single program counter)(1960-1970)

20220401

(2) Parallelization in node (Single memory space/OS)
Multiprocessor (SMP：～8）
⇒ 1990-Microprocessors
Multiprocessor (NUMA：128～）
⇒ 2000-for servers
Multicore (～22cores)
⇒ 2010-for consumers

(3) Parallelization in system (Multiple memory space)
Distributed system (message)
Large scale system

Network

Network

Memory Memory Memory Memory

Memory Memory Memory Memory

History of high-speed digital computers
20220401

5

6

From instruction fetch to storing result

Systematic management of ALU,
Register and Memory

7
Typical functional decomposition

Fetch an instruction from PC addr. of main memory

Decode the instruction and read data from register
Prepare control signals for following stages

Execute arithmetic, logical, shift or other operation
For load/store instruction, calculate effective address (add or sub)

For load instruction, read data from main memory to register
For store instruction, write data from register to main memory
Other instruction, do nothing

Store result of execution or load data into register

8
Check operation flow and time

Supplying addr. to instruction cache to fetch an instruction

Extracting register numbers form the instruction
Then supplying them to register file to get resister contents

Supplying input value to getting output through LogN step gates

For load instruction, supplying addr. to getting data
For store instruction, supplying addr. to writing data

Supplying register number to storing result of execution or load

Read latency of instruction cache

Read latency of register file

Latency of LogN step gates

Read/write latency of data cache

Write latency of register file

9
Pipeline execution from fetch to write

Just do it sequentially … like ancient 8bit CPU (no cache)
T

inst1

inst2

inst3

inst1

inst2

inst3

inst4

inst5

Fast execution by stage parallel execution
Since temporal storage (pipeline registers) is required,
Improvement is smaller than the number of stages

T
Even slower, if execution time of each stage is not balanced

10
Level 1 cache (small and fast)

Cache latency is a guideline of “stage latency”

Register file (smaller and fast)
Ex. 32bit width x 32 (128 byte)

Ex. 64byte width x 256 (16K byte)

LogN stage logic gates
Ex. 32bit adder (thousands of transistors)

For simple CPU, cache speed roughly determines total performance

Other basic components (Longer latency than pipeline stage latency)
Level 2 cache (middle capacity and middle speed)

> 2MB
Main memory (large but small)

> 2GB

Fast enough but double speed operation is required (discuss later)

Fast enough but write latency is not negligible due to its long path
(discuss 3rd day)

11

Pipeline Register

Manage signal propagation

12
Mechanism of master slave latch

When CK=0, input value is propagated to 1st stage, output is unchanged

When CK=1, input value is propagated to output

13
Operation of master slave latch

When CK↑, each pipeline stage starts operation
If result of previous stage is arrived, propagation is blocked by latch
If result is not arrived when CK↑, propagation is failed

Inst1 Fetch Inst2 Fetch

Inst1 Decode Inst2 Decode

Inst1 Exec Inst2 Exec

Decode latency

Execution latency
Clock skew (phase mismatch)

Begin

Begin End

End

Therefore, to supply higher frequency clock without latency improvement
causes malfunction
Clock skew is also common reason of malfunction

14
Locate pipeline registers between stages

Clock and pipeline register

Combinational logic

Register file/Cache

By connecting output to input of previous stage, information can be hold
Ex. Use +4 logic as combinational logic to make program counter

Source code

Instructions

/* reg r1: top address of array R1[] */
/* R2: index for array R1[] */
/* add 8 to second element of R1[] */
/* reg r2: R2 */

r4 ← mem[r1+4]
r8 ← r4 + 8
Mem[r1+4] ← r8
r5 ← mem[r1+r2*4]
r9 ← r8 – r5
Mem[r1+r2*4] ← r9

Computer repeats Decode, Read, Execution and Write-back.

20220401

15Recall the previous class #2001

16
Fetch – Fetch an instruction

Main memory/
Instruction cache

Read PC addr. of Main memory and write result to instruction buffer

address

inst buf 3

inst buf 2

inst buf 1

Imm.

17
Decode – Decode instruction

Register file

Imm.

Immediate value# of register

inst buf 1

Register No.

ALU input 2

ALU input 1ADD

Decode instruction then prepare control signals for ALU, input data,
output register number

18
Basic structure of register file

Write
data

Write Sel&CK

Read Sel

Read Sel

Read
data

Write Sel&CK

For write, decode logN bit then set one of N WriteSel&CK to 0
For read, decode logN bit then set one of N Read sel to 1

Select one of N registers and Write or Read it

19
Overall structure of register file

For every cycle execution, following function is required for register file
Read from either same or different two registers (two read port)
Write to one register (one write port)

At the end of first half cycle, Wdata is available at Rdata
At the end of second half cycle, Rdata is written in pipeline register

Pipeline register #1
Pipeline register #2

20
Antiphase operation of pipeline register and register file

Inst1 Fetch Inst2 Fetch

Inst1 Decode Inst2 Decode

Inst1 Exec Inst2 Exec

Begin

Begin End

End

WRITE WRITE

Decode latency

Execution latency

Register

If register file is composed of latch, half cycle READ/WRITE are possible
Write in first half cycle and read in second half cycle
Register bypassing (explain later) can be omitted

If register file is composed of memory, half cycle operations are not possible
Register bypassing (explain later) is required

21
Execute

Logical op. unit (AND/OR)

Logical op. unit (XOR)

Arithmetic op. unit
(with carry calculation)

ALU input 2

ALU input 1

ALU output Register No.

Register No.ADD

Do operation that is specified by control signal, result is stored temporally
Do address calculation for load/store instructions

22
Cache – Read operand

Main memory/data cache

ALU output

Read data Register No.

Register No.

Memory address

Access memory with calculated address and store result temporally
If virtual address cache, TLB is in this stage
If store buffer is implemented, it is also in this stage

23
Write – Write result

Register file

ALU output Register No.

Write result to register file
Note that there is register file in Decode stage
If it is composed of latch, half cycle READ/WRITE is possible
If it is composed of memory, half cycle operation is not possible

24
Simply connect them together

Logical op. unit (AND/OR)

Logical op. unit (XOR)

Arithmetic op. unit
(with carry calculation)

Register file

Register file

Main memory/data cache

Main memory/inst. cache

Register No.

Register No.

Register No.Read data

ALU output

ALU input 2
ALU input 1ADD

imm

Immediate valueRegister number

Memory address

Memory
address

inst buf 3
inst buf 2
inst buf 1

Why there are two register
files? Impossible!

Temporally register

Long latency structure

25
Connect them correctly (Decode and Write are in one cycle)

Half cycle operation
is required here

Logical op. unit (AND/OR)

Logical op. unit (XOR)

Arithmetic op. unit
(with carry calculation)

Register file

Main memory/data cache

Main memory/inst. cache

Register No.

Register No.

Register No.Read data

ALU output

ALU input 2

ALU input 1ADD

imm

Immediate valueRegister number

Memory address

Memory
address

inst buf 3
inst buf 2
inst buf 1

26
Load then add (ld-use penalty if dependency is exists)

Logical op. unit (AND/OR)

Logical op. unit (XOR)

Arithmetic op. unit
(with carry calculation)

Register file

Main memory/data cache

Register No.

Register No.

Register No.Read data

ALU output

ALU input 2

ALU input 1ADD

Immediate valueRegister number

Memory address

Shortcut
Bypass for r4

Still 1 τ
stall

Logical op. unit (AND/OR)

Logical op. unit (XOR)

Arithmetic op. unit
(with carry calculation)

Register file

Main memory/data cache

Register No.

Register No.

Register No.Read data

ALU output

ALU input 2

ALU input 1ADD

Immediate valueRegister number

Memory address

When load is done When execution of add is done

27
Add then Store (no penalty by bypassing)

Logical op. unit (AND/OR)

Logical op. unit (XOR)

Arithmetic op. unit
(with carry calculation)

Register file

Main memory/data cache

Register No.

Register No.

Register No.Read data

ALU output

ALU input 2

ALU input 1ADD

Immediate valueRegister number

Memory address

Register No.

Shortcut
Bypass for r8

Store data

Store data

Logical op. unit (AND/OR)

Logical op. unit (XOR)

Arithmetic op. unit
(with carry calculation)

Register file

Main memory/data cache

Register No.

Register No.

Register No.Read data

ALU output

ALU input 2

ALU input 1

Immediate valueRegister number

Memory address

Store data

If necessary

When execution of add is done When add is completed

Superscalars

for gathering instructions to be
executed simultaneously

28

Deep pipeline stages requires many instructions

High-speed device for true speed-up (x2 frequency)
Now, device-level
improvement is very hard

Super pipelining for fake speed-up (x2 frequency)

Fake speed-up (x4 frequency)

Dependent instruction is delayed (same speed)

Branch instruction is also delayed (very slow)

Re-ifetch due to branch miss-prediction

Inefficiency of fake high-frequency 29

Importance of gathering instructions
High-frequency is inefficient. （Power ∝ F^3）
 Employing parallelism is most important
 First superscalar executes neighbor two instructions
 Modern superscalars gather from large window.

Accurate branch prediction is required

Re-ifetch due to branch miss-prediction

30

31Obstacles for simultaneous execution of instructions

Three types of dependency in programs
Flow dependency (write ⇒ read)
Succeeding insn refers the result of preceding insn

Anti-dependency (read ⇒ write)
Succeeding insn should wait for preceding read

Output dependency (write⇒ write)
Succeeding insn should wait for preceding write

Fundamental data dependency is hard to resolve

Register renaming can remove dependency

Register renaming can remove dependency

32Basic idea to remove dependency

The usage of registers are defined by ABI (application
binary interface), then compilers don’t have enough
registers.
Register number is just representing data dependency.
No need to assign physical register as specified.

If a new destination register is assigned to every insn,
anti-dependency and output dependency are eliminated.
 Specified register number: Architectural register
 Real register number: Physical register

33Register renaming
Previous example: no parallelism

Renamed destination registers

Remapped source registers

2-instructions/cycle doubles the performance

34Releasing physical register

When each physical register is released ?

Physical register seems permanently blocked,
because future consumer is unknown.

After correct branch-direction is determined and preceding
insns are finished, architecture register is confirmed.

Then corresponding physical register is released.

 Physical register scheme: uses unified register space
Map for “arch-reg⇒phys-reg” is maintained

 Reorder buffer scheme: uses architectural register space

35
Before new branch, snapshot of reg-map is required.

Physical register scheme

Reg-map

Src-reg# Imm Dst-reg#

Free
reg
list Insn-order

not sequential

add

add

Phys-reg# Phys-reg#

Phys-reg#

Imm

Issue-logic is
inserted later

Input#1 for ALU

Phys-register file

Input#2 for ALU

ALU

36Reorder buffer scheme
Destination register is allocated in reorder buffer.

Reg-map

Src-reg# Imm Dst-reg#

ROB-
tag Insn-order

sequential

add

add

Reg/ROB# ROB#Imm

Input#1 for ALU

Arch-reg file

Input#2 for ALU

ALU

ROB#

ROB
Issue-logic is
inserted later

37

Issue mechanism for
executing multiple instructions

38Instruction window
It is easy to issue neighbor instructions.
But parallelism is limited.

Keep many instructions in rename-retire window, and
select as many as possible.

39Where instructions are enqueued

Reservation station scheme: just before execution stage
All operands should be read before enqueued.

Centralized instruction window scheme: just before reg-
read stage

40Reservation station scheme

For back-to-back execution, the result should be forwarded
to next execution every cycle.

41Centralized instruction window scheme

After issued, registers are read.
“Select & read” stage is critical.

42

VLIW

Compiler schedules
multiple instructions in parallel

43VLIW (very long instruction word)

Compiler statically schedules instructions in long-format.
Binary code is dedicated to specific parallel architecture.
Simple hardware can reduce power consumption.

op#1
op#2
op#3
op#4
op#5
op#6
op#7
op#8

int

float
float

int/ld/st

int/ld/stload

int/brc
int/brc
float

float
float

float

Instruction decode Execute

time

44Example of scheduling

45Packing of instructions

VLIW: 38operations, 128bytes
Superscalar: 38operations, 152bytes

46Instruction scheduling

Wide-issue VLIW requires global scheduling beyond basic
blocks.

Software pipelining

Loop unrolling

Trace scheduling

Percolation scheduling

47Software pipelining
Scheduling for eliminating bubbles in pipeline

Consider latency of each instruction.

1cycle bubble

1cycle bubble
addr (r1+4) ⇒ r8

add
r10 ⇒ addr (r1+4)
addr (r1+r5*4) ⇒ r11

subtract
r12 ⇒ addr (r1+r5*4)

Rescheduling can reduce execution time.

48Loop unrolling
addr (r1+r5*4) ⇒ r8

floating add
1cycle bubble

2cycles bubble
r8 ⇒ addr (r1+r5*4)
update index
repeat 30 times ?

N-unrolling needs many registers but can increase speed.
(case N=3)

assume r2 = r1+4
assume r3 = r1+8

49Trace scheduling
Get frequently executed path by trial-execution.
Schedule instructions in main-path beyond basic-block.
Code size often explodes with many basic-blocks.

Basic
block

Optimize main-path

50Percolation scheduling
Suppress code size explosion to same extent.

Copy

Unify

Duplicate

51Speculation by compiler

Superscalar has complicated hardware for speculation.
If compiler does such aggressive scheduling as
superscalar, hardware can be simplified.
However, compiler cannot take risk to crash user
programs by illegal memory access.

Compiler needs special instructions that can suppress
illegal memory access.

52Speculation by compiler

“Non-faulting load/execution” and “checking store”
instructions for VPP5000 supercomputer

Source program Normal insn With speculation support
(speculation)
(speculation)
(speculation)

(check)

(speculation)

(retry)

“Non-faulting load/check” instructions for IA64 (intel)

53Summary

Compiler is conservative if no architectural support for
speculation.

Architects should consider special hardware to support
compilers to make hardware more simple.

That’s all for today

54

	スライド番号 1
	スライド番号 2
	スライド番号 3
	スライド番号 4
	スライド番号 5
	スライド番号 6
	スライド番号 7
	スライド番号 8
	スライド番号 9
	スライド番号 10
	スライド番号 11
	スライド番号 12
	スライド番号 13
	スライド番号 14
	スライド番号 15
	スライド番号 16
	スライド番号 17
	スライド番号 18
	スライド番号 19
	スライド番号 20
	スライド番号 21
	スライド番号 22
	スライド番号 23
	スライド番号 24
	スライド番号 25
	スライド番号 26
	スライド番号 27
	スライド番号 28
	スライド番号 29
	スライド番号 30
	スライド番号 31
	スライド番号 32
	スライド番号 33
	スライド番号 34
	スライド番号 35
	スライド番号 36
	スライド番号 37
	スライド番号 38
	スライド番号 39
	スライド番号 40
	スライド番号 41
	スライド番号 42
	スライド番号 43
	スライド番号 44
	スライド番号 45
	スライド番号 46
	スライド番号 47
	スライド番号 48
	スライド番号 49
	スライド番号 50
	スライド番号 51
	スライド番号 52
	スライド番号 53
	スライド番号 54

