Green Computing Platforms

Step 4 CA11: Multicores and Distributed Memory System

http://archlab.naist.jp/Lectures/ARCH/call/calle.pdf

Copyright © 2024 NAIST Y.Nakashima

http://archlab.naist.jp/Lectures/ARCH/ca11/ca11e.pdf

Download the template and submit through UNIPA.

http://archlab.naist.jp/Lectures/ARCH/call/calle.docx

In http://archlab.naist.|p/Lectures

http://archlab.naist.jp/Lectures/ARCH/ca11/ca11e.docx
http://archlab.naist.jp/Lectures

Parallel processing

If vectorizable, speedup will be possible by parallelization
Key points for parallelization are:

» Reduce non parallelizable part
Optimize the algorithm

» Load balancing (equalize the execution time)
Consider cache miss penalty
Minimize synchronization overhead

» Reduce the communication overhead
Reduce number of synchronization
Reduce communication traffic volume
Reduce number of communication
Overlap communication and computation
Reduce OS overhead

@yNAIST.

Multi-Threading and Multi-Processor

SMT (Simultaneous Multi-Threading) --- e.g. HyperThreading

» Superscalar cannot make full use of all ALUs

» Execute multiple threads and achieve high utilization of ALUs
Equip multiple Program Counter
Share ALUs and Cache memory
If execute N threads, total throughput will be less than N

CMP (Chip Multi-Processor) --- e.g. Multi-Core
» Implement multiple processors on one LSI
Equip multiple Program Counter
Dedicated ALU, L1 Cache, and Shared L2 Cache
Total throughput will be less than N, but closer to N than SMT
Simpler and better energy efficiency than SMT |

15 WyNAIST.

Proposed CMP (Chip Multi Processors)

Heterogeneous configuration
» One (or more) CPU with multiple VLIW/SIMD/DSP

» Offload some processing onto dedicated unit and optimize
» Good for real-time specific processing

IBM/SONY/TOSHIBA Cell : :
MATSUSHITA UniPhier 5 } 1R ;
TOSHLSA MeP . 5 T || I 3
RENESAS SH-Mobile :
T QMAP =cE PC
NEC MP211 ;

i \E“?&"f ﬁ“?&‘?/

Homogeneous configuration

» Connect multiple same processors (can be with VLIW/SIMD/DSP)
» Parallel processing on the multiple CPUs

» Good for software development but bad for real-time processing

ARM MPCore
FUJITSU FR-V
INTEL Core-Extreme

17 WNAIST.

Multi-Threading and Execution model

Focus on thread-level parallelism in addition to instruction-level
Followings are traditional (non speculative) execution model

Execute multiple processes on a processor
» Traditional model
» Each process runs same speed or slower
» Just execute multiple processes

Typical use of common SMT/CMP

Execute one process on multiple processors

» Traditional model

> Use inter-process communication for programming

* Parallel programing framework (such as OpenMP) is available
Multi-Threaded application is popular

11 @NAIST.

New execution model (Speculative)

Helper Threads
» Helper threads execute some instructions

» Accelerate main thread but do not update register/memory
» Execution mechanism with no update is required
Applicable to SMT/CMP
Prefetching to shared cache and better branch prediction

Speculative Architectural Threads

» Speculative threads execute some region of program

» Speculative threads update register/memory

> Save/Restore mechanism of register/memory is required
Main thread=> Speculative thread management is required
Acceleration by automatic parallelization

12 #YNAIST.

Traditional parallelization with Multi-Processing

One of the kernel processes in procimage
Depth retrieval L();
Depth retrieval R();

Minimum modification for parallelization
Each process has dedicated memory space

Send/Recv to spread/gather data
{ int pfd[2]; int ¢ = 0;

pipe (pfd) ; /* Create pipe for inter-process communication */
if (fork()) { /* Create child process */

Depth retrieval L(); /* Process L image */

while (c < sizeof (Dr)) /* Receive result from child process */

c += read(pfd[0], (char*)&Dr+c, sizeof (Dr)-c);
close (p£d[0]) ;

wait((union wait *)0); /* Wait termination of child process */
}
else {

Depth retrieval R(); /* Process R image */

while (c < sizeof (Dr)) /* Send result via pipe */

c += write(pfd[1l], (char*)é&Dr+c, sizeof(Dr)-c);

exit (0); /* Terminate child process */

}

} -
13 WyNAIST.

Shared Memory Space

10

Parallel processing by multi-threading

One of the kernel processes in stereo image processing

14

Depth retrieval L();
Depth_retrieval R();

Multi-threading by pthread_create()
pthread create(&th 0, NULL, Depth retrieval L, NULL);
pthread create(&th 1, NULL, Depth retrieval R, NULL);
pthread create(&th 2, NULL, ---, NULL);
pthread create(&th 3, NULL, ---, NULL) ;

All threads share the memory space. Send/Recv is not required

Local variables are not shared. Global variables are shared
pthread join(th 0, &tr 0);
pthread join(th_1, &tr_ 1);
pthread join(th_2, &tr 2);
pthread join(th_3, &tr_3);

@yNAIST.

10

Necessity of cache coherent management

» Original data is located in Shared memory

» Cache is important for performance

» How to manage multiple caches without inconsistency

Processorl

Processor2

Processor3

® CPU1 stores X in addr A

® And CPU2 stores Y in addr A X

Y

Cache

CPU1 and CPU2 should inspect each other.
However, inspection causes unacceptable
Overhead.

As the number of CPUs increases, the overhead

exponentially increases.

Shared memory

11

What is cache coherent management

When data is updated, other caches should be invalidated.

Processorl

Processor2

Snooping [li¥3 Snooping [l Cache
unit | unit |

Address Address

Shared memory

Write invalidate protocol for write back cache (MSI protocol)

1)No valid data = Invalid
2)Potentially shared data = Shared
3)Potentially updated data = Modified

12

Processorl

Processor2

MSI Protocol

l’_l_ » |

¢

A
B
C
D
S0
Processorl| |Processor2
DA EE Pz
A ﬂ
- | " - _— /
QADEALEL [T ginvalc
A
E —1
C Shared
D

S3

Processorl| |Processor2 Processorl| |Processor2.
Fatlzn] | DAZCOFEAHL IR DCOIFEEV | |
A
C TC ¥ @CFinvalid
A | (
] ' » - @invald ”
‘ / .F.-'I A
. B ,/:I B :I
~ C " shared C shared
D D
g S2
Processorl Processor2
| [AZISE
A* q
+
A
B /
C Modified
D
- s4 ’
Processorl Processor2 Processorl Processor2
(DADS AT EZIAR:
s I — 2
fl]
DAD FEA BLIR e = DAD TR BL e an
@ADL | A Va DGADEEEL] K / GADEEREL
B /1 B]
C Modified: C Modified:
D D
S5 S6

13

Cache coherent management for shared memory

MESI Protocol (lllinois protocol) --- Pentium
Modify: One cache has valid data (Memory data is obsoleted)

Exclusive:One cache has valid data (Memory data is also valid)
Shared: Some caches have valid data(Memory data is also valid)
Invalid: No cache has valid data

Writable only when M/E

Write for S -> Invalidate other cache

Other’s Write for S -> Snoop and Invalidate

Other’s Write for M -> Snoop and Writeback+Invalidate

MSI Protocol
E is represented by S, Write notification is always required (Slow)
MOESI Protocol --- AMD64

Owned: One cache has Modified data and some caches have Shared data
Owned provide valid data for other core’s cache miss

Core#o0 Core#1 Core#2 Core#3
1T 1 T 1T 1 T 1 1T 1
Cache Cache Cache Cache
28 MEM#0 MEM#1 MEM#2 DDR#3

WyNAIST.

14

Cache coherent management for shared memory

Coherent mechanism becomes complicated for many cores.

Banked memory + Directory management

Core Coref#f0 #1 #2 #3 Core#f0 #1 #2 #3 #4 #5
1 1 1 1

Bus B B B Bus j B |: j B Eus VIPT (virtual address)
| 1 1 1 1 1 1 1

Banked Shared cache

125 125 ,' ,' : " L2S PIPT (physical address)
Banked shared cache

Mem Mem Mem(physical address)

@ Single core @ Shared L2 (3) Banked L2

Core#0 #1 #2 #3 #4 #5 Core#6 #7 #8 #9 #10 #11

HHHHHH HHOHHE

B0 Bl B2 B3 B0 Bl B2 B3 \When cache miss, ask Directory

C I C 1 C 101 [0][] [|Preecas : .
e Manage L2 state of pre-assigned
Clllfs'gelr#ll physical memory space

Mem

29 4 Banked L2+Directory WyNAIST.

An Example (looks like Intel MIC)

CORE#0
Thit | Th#2|

Reg.

Th#0
Reg. | Reg

W \ees

11$ 32KB/8way l

01$ 32KB/8way

inclusive
T .

L2$ 512KB/8way
MOESI

P

L2RQ l LZCC l

Y

L2DIR

#0

Th#3| 4threads/core

Fmul

Fadd 4/1
Fdiv 20/20
Fsqrt 20/20

Miss:15cycle

Miss:15cycle

Miss->otherL2:15cycle
Miss->Memory:200cycle

CORE#58 C_ORE#59 |
Th#O‘ Th#1| Th#2| Th#3 Th#ﬂ‘ Th#1‘ Th#2| Th#3|
Reg. | Reg. | Reg Reg Reg. || Reg. || Reg. | Reg
O v/ O o/

11$ 32KB/8way l 11$ 32KB/8way l
01$ 32KB/8way 01$ 32KB/8way
inclusive inclusive
T’ - i’ -
L2$ 512KB/8way L2$ 512KB/8way
MOESI MOESI
Y i} ¥)
LZRQ LZCC L2RQ L2CC
¢ i)

| L2DIR ‘ | L2DIR H L2DIR H L2DIR H L2DIR H L2DIR H L2DIR | L2DIR ‘

#62 #63

L ll‘

MainMem
#0

| MalnMem

!gialn‘iiem

)
Hamaem
#3

2013/11/11

Sim_core.c

Thitol| Thetdl Thitd| The
Reg.| Reg.| Reg.| Reg.

| 11$ 32KB/8way |

» 11% is shared among thread and provides 1
instr./cycle (not 4 instr./cycle)

» D1$ and L2$ have Valid, Dirty, Shared bits/line

D13 32KB/8way > VO .. invalid -> miss
'"c'as've » DO0,S0 ... load hit, store miss(update L2dir)
L2$ 512KB/8way] » D1,S0 ... load hit, store hit
| MOESI » D1,S1 ... load hit, store miss(invalidate
%& i other$)
I%' ILECI » DO0,S1 ... load hit, store miss(invalidate
S other$) 13 fil
[Select L1$ LRU- way |[Request L2$ for] Get Iine]
to replace & extract line | load/store for L2%

L2S miss

L2CC Ack

(inclusive never

Writeback to L2$

N

2013/11/11

for Ack

Select L2$ LRU-way to[Request Wait
MmIss) replace & extract line | L2dir to

Req L2dir get line
Writeback to MM MMCC

17

| Sim_mreq.c J 18

. L2RQ || L2¢C | ' L2RQ || L2cc | | L2Rra || L2cc |
Y L} ¢ L} Y &
L2DIR » L2dir has V,D,S/line for each Core (hash is used in the real hardware)
» VO ... Invalid, D0O,SO ... Exclusive, D0,S1 ... Shared
#0 > D1,S0 ... Modified, D1,S1 ... Owned
L 2N | i‘ % ¢ 0 ¢ 0
L2% Invalidate Req: Others: Exclusive/Shared > Invalid Local: > Modified
MM Writeback Req: Others: Exclusive/Shared > Invalid Local: > Invalid
Read Req for load: Home: > Owned Others: no-change Local: > Shared
If no HOME, data should be loaded from MM (Shared can be invalidated anytime)
Read Req for store: Home: Copyback > Invalid Others: > Invalid Local: > Modified
If no HOME, data should be loaded from MM (Shared can be invalidated anytime)
L1S miss L1S fill
[Select L1$ LRU-way |[Request L2$ for Get line
to replace & extract line | load/store for L2$
L2S miss L2CC Ack
Writeback to L2$ |[Select L2$ LRU-way to Request :
:)))) Walt
(inclusive never miss) replace & extract line | L2dir to

-) for Ack
Req L2dir get line
Writeback to MM MMCC

2013/11/11

Sim_cluster.c

_ Y o
MainMem
#0

Simply gets the request from L2dir and sends ack to L2dir

L1S miss L1S fill
[Select L1$ LRU-way |[Request L2$ for Get line }
to replace & extract line | load/store for L2$
L2S miss L2CC Ack
Writeback to L2$ |[Select L2%$ LRU-way to[Request :
:)) :) Wait
(inclusive never miss) replace & extract line | L2dir to

-) for Ack
Req L2dir get line
Writeback to MM MMCC

2013/11/11

19

Exclusive control

» Some threads update shared data
» How to manage it?

[Thread1] Address A [Thread2]

; 2 ;
A=A+ 1] =—— 3 :
4 Je— A=A+

[Inst1] [Inst2]
load Arl g 2 b l0ad A2

add r1,#1,r1 add r2 #1.r2
store Al =— 3 :
3

4 store Ar2

Even cache coherency is correct, result is wrong.
“Exclusive control” is required

20

What is Exclusive control 71

> Intel uses cmpxchg reg, mem --- atomic instruction

When %eax = mem, store reg to mem
When %eax = mem, load mem to %eax

Loop:

[Thread] Address X
mov #1,0 259
mov #2955 %eax

lock cmpxchg rO0, X €= 255
brc %eax!=255 =P

load Al 1

add r1#1,r1 1
store Arl 1

mov #255,X \—» 255

Critical section

[Thread 2]
mov #1.r0

255 Loop: mov #2595, %eax
255 lock cmpxchg r0, X
1 brc %eax!=255

load A rl
add r1,#1 r1
store A rl

/ mov #255 X

What is Exclusive control

» ARM uses 1drex and strex
ldrex ro,X Lock addr X and load it to r0
-- Other thread may unlock addr X
strex ro,X IfaddrXis still locked, store r0 to X
» Bus lock is not required

> cmpxchg (X, old, new) if X=old, store new to X

cmpxchg: Idrex r3, X - Lock and Load addr X
mov #0, r4 - set 0 tord
test r3, old -+ compare r3 and _old
strexeq r4, new, X --- If same,

If still locked, store _new to X and set 0 (ok) to r4
Otherwise, set 1 (fail) to r4

brc r41=0 = Retry when failed

return -+ Return when succeeded

22

Exercise

Execute following 32 threads (tid=0,1,...,31)
Where does the difference of the execution speed come from?

#define SIZE 32768 #define SIZE 32768
double A[SIZE]; double A[SIZE];
void *parallel(tid) int tid; void *parallel(tid) int tid;
{ {

intj, k; intj, k;

for (k=0; k<SIZE; k++) { for (k=0; k<SIZE; k++) {

for (j=0; j<SIZE; j++) for (j=0; j<SIZE; j++)
Atid*8] +=k; Aftid] += k;

} }

} }

4.3 Sec. 108 Sec.

23

Exercise

#define SIZE 32768 #define SIZE 32768
double A[SIZE]; double A[SIZE];
void *parallel(tid) int tid; void *parallel(tid) int tid;
{ {

int j, k; intj, k;

for (k=0; k<SIZE; k++) { for (k=0; k<SIZE; k++) {

for (j=0; j<SIZE; j++) for (j=0; j<SIZE; j++)
A[i*8] += k; Ali] +=k;

} }

} }

8byte X 8=64byte
Located in different cache lines

| ‘ Located in same cache line

|
la | | | | | ato1 | At | ar21 | A |

Lo |]

24

10

Distributed Memory System

25

Shared memory space or Distributed memory space

Single memory space (Shared)

» Multiple CPUs in one cabinet
> Multicore CPUs are also Shared

» Cache coherent management is
required. Bad scalability but
Good programmability

Multiple memory space (Distributed)

» Connect multiple PC/Server via
network connection

» Super computer has also
distributed memory space

» No cache coherent management
Good scalability

CPUR0 CPU#1 CPU#2 CPU#3
[T T 1 T 1] T 1 T T
Cache Cache | Cache Cache
1| | | L |
Network
[[| | |
Memory‘ ‘ Memory‘ ‘ Memory‘ ‘ Memory - 10
bank#0 || bank#1 | bank#2 | os !
CPU#0 CPU#1 CPU#2 CPU#3
T T T T T T
Cache Cac:he[T Cache Cache
|
Memory Memory | | Memory Memory
os#0 os#l os#2 Os#3
| T T |
10 10 | | IO‘ 10
} -1 1 T

Network

Data transmission between different systems (OS, Memory)

Data transmission requires OS support

» In shared memory systems, data access is always possible
No OS support is required

Applications know address of shared data (available on shared
memory)

» In distributed memory systems, data transmission is required to
access other memories

Once data transmission start, hard to interrupt

Operating system dynamically manage virtual-physical memory
mapping

Data transmission buffer should be kept while transmitting

7 @yNAIST.

27

Data transmission between different systems (OS, Memory)

OS support

» Transmission buffer should be fixed physical address area
» Application send data via SEND() system call

» OS copies application data to the transmission buffer
Then application data can be removed

» Communication driver transfers data from send buffer to receive
buffer in receiver
» Communication driver in receiver node notifies OS of data arrival

» OS copies the transmission buffer to application data space
Then application data can be removed

» Continue application (Complete RECV() or WAIT())
WyNAIST.

28

Reduce OS overhead

Which operation can be reduced

» Application -> (System call) -> Send buffer
» Send buffer -> (Communication) -> Receive buffer
» Receive buffer -> (System call) -> Application

Optimal data transmission
» Application -> (Communication) -> Application

Fixed physical memory buffer in application is required

» When execution is started, application allocates fixed address space
» Can communicate directly

9 #NAIST

29

Summary

Processor always repeats specialization and generalization

Also repeats improving node performance and parallel computing
(increasing number of nodes)

Improvement in technology repeats like spiral

Basic concepts are the same, but practical implementations may be
different

It is important to recall traditional techniques!

30 WNAIST.

30

20220216

31

That's all for today

	スライド番号 1
	スライド番号 2
	スライド番号 3
	スライド番号 4
	スライド番号 5
	スライド番号 6
	スライド番号 7
	スライド番号 8
	スライド番号 9
	スライド番号 10
	スライド番号 11
	スライド番号 12
	スライド番号 13
	スライド番号 14
	スライド番号 15
	スライド番号 16
	スライド番号 17
	スライド番号 18
	スライド番号 19
	スライド番号 20
	スライド番号 21
	スライド番号 22
	スライド番号 23
	スライド番号 24
	スライド番号 25
	スライド番号 26
	スライド番号 27
	スライド番号 28
	スライド番号 29
	スライド番号 30
	スライド番号 31

