High Performance Computing Platform: #5 Design of High Performance Calculation Units

Renyuan ZHANG

Comp-Arch-Lab, Division of Info. Sci., NAIST

MOS Transistors

- Four terminal device: gate, source, drain, body
- Gate oxide body stack looks like a capacitor
 - Gate and body are conductors (body is also called the substrate)
 - SiO₂ (oxide) is a "good" insulator (separates the gate from the body
 - Called metal—oxide—semiconductor (MOS) capacitor, even though gate is mostly made of poly-crystalline silicon (polysilicon)

>PMOS

NMOS Operation

- Body is commonly tied to ground (0 V)
- Drain is at a higher voltage than Source
- When the gate is at a low voltage:
 - P-type body is at low voltage
 - Source-body and drain-body "diodes" are OFF
 - No current flows, transistor is OFF

NMOS Operation Cont.

- When the gate is at a high voltage: Positive charge on gate of MOS capacitor
 - Negative charge is attracted to body under the gate
 - Inverts a channel under gate to "n-type" (N-channel, hence called the NMOS) if the gate voltage is above a threshold voltage (VT)
 - Now current can flow through "n-type" silicon from source through channel to drain, transistor is ON

PMOS Transistor

- Similar, but doping and voltages reversed
 - Body tied to high voltage (V_{DD})
 - Drain is at a lower voltage than the Source
 - Gate low: transistor ON
 - Gate high: transistor OFF

Power Supply Voltage

- GND = 0 V
- In 1980's, $V_{DD} = 5V$
- V_{DD} has decreased in modern processes
 - High V_{DD} would damage modern tiny transistors
 - Lower V_{DD} saves power
- $V_{DD} = 3.3, 2.5, 1.8, 1.5, 1.2, 1.0,$
- Effective power supply voltage can be lower due to IR drop across the power grid.

Transistors as Switches

- In Digital circuits, MOS transistors are electrically controlled switches
- Voltage at gate controls path from source to drain

$$g = 0 \qquad g = 1$$

$$\text{nMOS} \qquad g = 1$$

$$\text{pMOS} \qquad g = 1$$

$$\text{d} \qquad \text{OFF} \qquad \text{ON} \qquad \text{of } \text{OFF} \qquad \text{of } \text{of } \text{OFF} \qquad \text{of } \text{of } \text{OFF} \qquad \text{of } \text{$$

CMOS Inverter

CMOS Inverter

➤ Y is pulled low by the turned on NMOS Device. Hence NMOS is the pulldown device.

CMOS Inverter

Α	Υ
0	1
1	0

➤ Y is pulled high by the turned on PMOS Device. Hence PMOS is the pull-up device.

Source of power disspation

•
$$P = P_{switching} + P_{short-circuit} + P_{leakage} + P_{static}$$

– Definitions:

```
• Switching power P = CV^2f\alpha
```

• Short circuit power
$$P = I_{sc}V$$

• Leakage power
$$P = I_{leakage}V$$

• Static power
$$P = I_{static}V$$

- α : switching activity factor
- Low power design would look at the trade-offs of the above issues

- Warning! In everyday language, the term "power" is used incorrectly in place of "energy"
- Power is not energy
- Power is not something you can run out of
- Power can not be lost or used up
- It is not a thing, it is merely a rate
- It can not be put into a battery any more than velocity can be put in the gas tank of a car

 Power supply provides energy for charging and discharging wires and transistor gates. The energy supplied is stored & then dissipated as heat.

$$P = dw/dt$$
 Power: Rate of work being done w.r.t time Rate of energy being used
$$P = E/\Delta t$$
 Unit: Watts = Joules/seconds

- If a differential amount of charge dq is given a differential increase in energy dw, the potential of the charge is increased by:
- By definition of current: I = dq / dt V = dw / dq

$$\frac{dw}{dt} = \frac{dw}{dq} \times \frac{dq}{dt} = P = V \times I$$
 A very practical formulation!

$$w = \int_{-\infty}^{t} Pdt \quad \text{Total energy}$$

An equal amount of energy is dissipated on pulldown

"Short Circuit" Current:

10-20% of total chip power

★ Junction Diode Leakage:

Transistor drain regions "leak" charge to substrate.

~1nWatt/gate few mWatts/chip

Dynamic Voltage Scaling must be along with Vth scaling!

Dynamic Voltage Scaling must be made with trade-off between ENERGY and speed!

NOT power v.s. Speed

Energy = Power * time for calculation = Power * Delay

$$P = \alpha f C_L V_{DD}^2 + V_{DD} I_{peak} (P_{0 \to 1} + P_{1 \to 0}) + V_{DD} I_{leak}$$

Dynamic power (≈ 40 - 70% today and decreasing relatively)

Short-circuit power $(\approx 10 \% \text{ today and})$ $(\approx 20 - 50 \% \text{ today})$ decreasing absolutely)

Leakage power and increasing)

CMOS Gate Design

• A 4-input CMOS NOR gate

Complementary CMOS

- Complementary CMOS logic gates
 - nMOS *pull-down network*
 - pMOS *pull-up network*
 - a.k.a. static CMOS

	Pull-up OFF	Pull-up ON
Pull-down OFF	Z (float)	1
Pull-down ON	0	X (crowbar)

Series and Parallel

- nMOS: 1 = 0N
- pMOS: 0 = ON
- Series: both must be ON
- Parallel: either can be ON

Conduction Complement

- Complementary CMOS gates always produce 0 or 1
- Ex: NAND gate
 - Series nMOS: Y=0 when both inputs are 1
 - Thus Y=1 when either input is 0
 - Requires parallel pMOS

- Rule of *Conduction Complements*
 - Pull-up network is complement of pull-down
 - Parallel -> series, series -> parallel

Compound Gates

- Compound gates can do any inverting function
- Ex: AND-AND-OR-INV (AOI22) $Y = \overline{(A \bullet B) + (C \bullet D)}$

Example: O3AI

•

$$Y = \overline{(A+B+C) \bullet D}$$

Example: O3AI

•

Pass Transistors

• Transistors can be used as switches

Pass Transistors

Transistors can be used as switches

$$g = 0$$

$$s \rightarrow d$$

$$g = 1$$

$$g = 1$$

$$g = 1$$

$$g \rightarrow d$$

$$g = 1$$

$$g \rightarrow d$$

$$g = 0$$

$$g = 1$$

$$1 \rightarrow degraded 1$$

$$g = 0$$

$$g = 0$$

$$g = 0$$

$$g \rightarrow degraded 0$$

$$g = 1$$

$$g = 0$$

$$g$$

Signal Strength

- Strength of signal
 - How close it approximates ideal voltage source
- V_{DD} and GND rails are strongest 1 and 0
- nMOS pass strong 0
 - But degraded or weak 1
- pMOS pass strong 1
 - But degraded or weak 0
- Thus NMOS are best for pull-down network
- Thus PMOS are best for pull-up network

Transmission Gates

- Pass transistors produce degraded outputs
- Transmission gates pass both 0 and 1 well

Transmission Gates

- Pass transistors produce degraded outputs
- Transmission gates pass both 0 and 1 well

Tristates

• Tristate buffer produces Z when not enabled

EN	Α	Υ
0	0	Z
0	1	Z
1	0	0
1	1	1

$$\begin{array}{c} EN \\ A \xrightarrow{} Y \\ \overline{EN} \end{array}$$

Nonrestoring Tristate

- Transmission gate acts as tristate buffer
 - Only two transistors
 - But *nonrestoring*
 - Noise on A is passed on to Y (after several stages, the noise may degrade the signal beyond recognition)

Tristate Inverter

- Tristate inverter produces restored output
- Note however that the Tristate buffer
 - ignores the conduction complement rule because we want a Z output

Tristate Inverter

- Tristate inverter produces restored output
- Note however that the Tristate buffer
 - ignores the conduction complement rule because we want a Z output

CMOS NAND Gate

Α		В		Υ		
0		0				
0		1				
1		0				
1		1				

Α		В	Υ
0		0	1
0		1	
1		0	
1		1	
	_) -

Α		В	Υ	
0		0	1	
0		1	1	
1		0		
1		1		
	_	d 9_)—)—	

Α		В	Y	
0		0	1	
0		1	1	
1		0	1	
1		1		
	_	<u> </u>)—)—	

Α		В		Y	
0		0		1	
0		1		1	
1		0		1	
1		1		0	

CMOS NOR Gate

А	В	Υ
0	0	1
0	1	0
1	0	0
1	1	0

3-input NAND Gate

- Y pulls low if ALL inputs are 1
- Y pulls high if ANY input is 0

3-input NAND Gate

- Y pulls low if ALL inputs are 1
- Y pulls high if ANY input is 0

Complex Gate

Karnaugh maps

- The Karnaugh map is completed by entering a '1'(or '0') in each of the appropriate cells.
- Within the map, adjacent cells containing 1's (or 0's) are grouped together in twos, fours, or eights.

Example

2-variable Karnaugh maps are trivial but can be used to introduce the methods you need to learn. The map for a 2-input OR gate looks like this:

Α	В	Υ
0	0	0
0	1	1
1	0	1
1	1	1

Example

Α	В	С	Y
0	0	0	1
0	0	1	1
0	1	0	0
0	1	1	0
1	0	0	1
1	0	1	1
1	1	0	1
1	1	1	0

Binary addition by hand

- You can add two binary numbers one column at a time starting from the right, just like you add two decimal numbers.
- But remember it's binary. For example, 1 + 1 = 10 and you have to carry!

HALF ADDER

Adding two bits

- We'll make a hardware adder based on our human addition algorithm.
- We start with a half adder, which adds two bits X and Y and produces a two-bit result: a sum S (the right bit) and a carry out C (the left bit).
- Here are truth tables, equations, circuit and block symbol.

Χ	Υ	С	S
0	0	0	0
0	1	0	1
1	0	0	1
1	1	1	0

FULL ADDER

Adding three bits

- But what we really need to do is add three bits: the augend and addend bits, and the carry in from the right.
- A full adder circuit takes three inputs X, Y and C_{in}, and produces a two-bit output consisting of a sum 5 and a carry out C_{out}.
- This truth table should look familiar, as it was an example in the decoder and n

Χ	Υ	C_{in}	C _{out}	S
0	0	0	0	0
0	0	1	0	1
0	1	0	0	1
0	1	1	1	0
1	0	0	0	1
1	0	1	1	0
1	1	0	1	0
1	1	1	1	1

Full adder equations

Using Boolean algebra, we can simplify S and C_{out} as shown here.

Χ	Υ	C_{in}	C _{out}	S
0	0	0	0	0
0	0	1	0	1
0	1	0	0	1
0	1	1	1	0
1	0	0	0	1
1	0	1	1	0
1	1	0	1	0
1	4	4	4	4

$$S = \Sigma m(1,2,4,7)$$

$$= X'Y'C_{in} + X'YC_{in}' + XY'C_{in}' + XYC_{in}$$

$$= X'(Y'C_{in} + YC_{in}') + X(Y'C_{in}' + YC_{in})$$

$$= X'(Y \oplus C_{in}) + X(Y \oplus C_{in})'$$

$$= X \oplus Y \oplus C_{in}$$

$$C_{out} = \Sigma m(3,5,6,7)$$

$$= X'YC_{in} + XY'C_{in} + XYC_{in}' + XYC_{in}$$

$$= (X'Y + XY')C_{in} + XY(C_{in}' + C_{in})$$

 Notice that XOR operations simplify things a bit, but we had to resort to using algebra since it's hard to find XOR-based expressions with K-maps.

Full adder circuit

 We write the equations this way to highlight the hierarchical nature of adder circuits—you can build a full adder by combining two half adders!

$$S = X \oplus Y \oplus C_{in}$$

 $C_{out} = (X \oplus Y) C_{in} + XY$

Full Adder Design I

• Brute force implementation from eqns

$$S = A \oplus B \oplus C$$
$$C_{\text{out}} = MAJ(A, B, C)$$

Full Adder Design II

- Factor S in terms of C_{out} S = ABC + (A + B + C)($\sim C_{out}$)
- Critical path is usually C to C_{out} in ripple adder

Full Adder Design III

- Complementary Pass Transistor Logic (CPL)
 - Slightly faster, but more area

A four-bit adder

- Similarly, we can cascade four full adders to build a four-bit adder.
 - The inputs are two four-bit numbers (A3A2A1A0 and B3B2B1B0) and a carry in CI.
 - The two outputs are a four-bit sum \$3525150 and the carry out CO.
- If you designed this adder without taking advantage of the hierarchical structure, you'd end up with a 512-row truth table with five outputs!

An example of 4-bit addition

Let's put our initial example into this circuit, with A=1011 and B=1110.

- 1. Fill in all the inputs, including CI=0
- 2. The circuit produces C1 and S0 (1 + 0 + 0 = 01)
- 3. Use C1 to find C2 and S1 (1 + 1 + 0 = 10)
- 4. Use C2 to compute C3 and S2 (0 + 1 + 1 = 10)
- 5. Use C3 to compute CO and S3 (1 + 1 + 1 = 11)

Ripple carry delays

- The diagram below shows our four-bit adder completely drawn out.
- This is called a ripple carry adder, because the inputs A0, B0 and CI "ripple" leftwards until CO and S3 are produced.
- Ripple carry adders are slow!
 - There is a very long path from A0, B0 and CI to CO and S3.
 - For an *n*-bit ripple carry adder, the longest path has 2n+1 gates.
 - The longest path in a 64-bit adder would include 129 gates!

PGK

- For a full adder, define what happens to carries
 - Generate: $C_{out} = 1$ independent of C
 - G =
 - Propagate: $C_{out} = C$
 - P =
 - Kill: $C_{out} = 0$ independent of C
 - K =

PGK

- For a full adder, define what happens to carries
 - Generate: C_{out} = 1 independent of C
 - $G = A \cdot B$
 - Propagate: C_{out} = C
 - $P = A \oplus B$
 - Kill: C_{out} = 0 independent of C
 - K = ~A ~B

A faster way to compute carry outs

- Instead of waiting for the carry out from each previous stage, we can minimize the delay by computing it directly with a two-level circuit.
- First we'll define two functions.
 - The "generate" function G_i produces 1 when there must be a carry out from position i (i.e., when A_i and B_i are both 1).

$$G_i = A_i B_i$$

 The "propagate" function P_i is true when an incoming carry is propagated (i.e, when A_i=1 or B_i=1, but not both).

$$P_i = A_i \oplus B_i$$

Then we can rewrite the carry out function.

$$C_{i+1} = G_i + P_i C_i$$

A_{i}	B_{i}	C_{i}	C _{i+1}
0 0	0	0	0
0	0	1	0
0	1	0	0
0	1	1	1
1	0	0	0
1	0	1	1
1	1	0	1
1	1	1	1

Let's look at the carry out equations for specific bits, using the general
equation from the previous page C_{i+1} = G_i + P_iC_i.

$$C_{1} = G_{0} + P_{0}C_{0}$$

$$C_{2} = G_{1} + P_{1}C_{1}$$

$$= G_{1} + P_{1}(G_{0} + P_{0}C_{0})$$

$$= G_{1} + P_{1}G_{0} + P_{1}P_{0}C_{0}$$

$$C_{3} = G_{2} + P_{2}C_{2}$$

$$= G_{2} + P_{2}(G_{1} + P_{1}G_{0} + P_{1}P_{0}C_{0})$$

$$= G_{2} + P_{2}G_{1} + P_{2}P_{1}G_{0} + P_{2}P_{1}P_{0}C_{0}$$

$$C_{4} = G_{3} + P_{3}C_{3}$$

$$= G_{3} + P_{3}(G_{2} + P_{2}G_{1} + P_{2}P_{1}G_{0} + P_{2}P_{1}P_{0}C_{0})$$

$$= G_{3} + P_{3}G_{2} + P_{3}P_{2}G_{1} + P_{3}P_{2}P_{1}G_{0} + P_{3}P_{2}P_{1}P_{0}C_{0}$$

 These expressions are all sums of products, so we can use them to make a circuit with only a two-level delay.

A faster four-bit adder

PG Logic

Carry-Ripple Revisited

Carry-Ripple PG Diagram

$$t_{\rm ripple} =$$

Carry-Ripple PG Diagram

$$t_{\text{ripple}} = t_{pg} + (N-1)t_{AO} + t_{xor}$$

PG Diagram Notation

Carry-Skip Adder

- Carry-ripple is slow through all N stages
- Carry-skip allows carry to skip over groups of n bits
 - Decision based on n-bit propagate signal

Carry-Skip PG Diagram

 $t_{\rm skip} =$

Carry-Skip PG Diagram

$$t_{\text{skip}} = t_{pg} + [2(n-1) + (k-1)]t_{AO} + t_{\text{xor}}$$

Variable Group Size

Delay grows as O(sqrt(N))

Carry-Lookahead Adder

- Carry-lookahead adder computes G_{i:0} for many bits in parallel.
- Uses higher-valency cells with more than two inputs.

CLA PG Diagram

Higher-Valency Cells

Brent-Kung

Sklansky

Kogge-Stone

Summary

Adder architectures offer area / power / delay tradeoffs.

Choose the best one for your application.

Architecture	Logic Levels	Max Fanout	Cells
Carry-Ripple	N-1	1	N
Carry-Skip n=4	N/4 + 5	2	1.25N
Carry-Inc. n=4	N/4 + 2	4	2N
Brent-Kung	2log ₂ N – 1	2	2N
Sklansky	log ₂ N	N/2 + 1	0.5 Nlog ₂ N
Kogge-Stone	log ₂ N	2	Nlog ₂ N

End

Thank you very much.