
Received June 24, 2020, accepted July 15, 2020, date of publication July 28, 2020, date of current version August 10, 2020.

Digital Object Identifier 10.1109/ACCESS.2020.3012581

Double SHA-256 Hardware Architecture
With Compact Message Expander for
Bitcoin Mining
HOAI LUAN PHAM 1, (Graduate Student Member, IEEE),
THI HONG TRAN 1, (Member, IEEE), TRI DUNG PHAN1, VU TRUNG DUONG LE2,
DUC KHAI LAM2, AND YASUHIKO NAKASHIMA1, (Senior Member, IEEE)
1Graduation School of Information Science, Nara Institute of Science and Technology (NAIST), Ikoma 630-0192, Japan
2Computer Engineering Department, University of Information and Technology-Vietnam National University, Ho Chi Minh City 700000, Vietnam

Corresponding author: Thi Hong Tran (hong@is.naist.jp)

This work was supported by the Japan Science and Technology Agency (JST) under the Strategic Basic Research Programs PRESTO
Grant number 2019A039.

ABSTRACT In the Bitcoin network, computing double SHA-256 values consumes most of the network
energy. Therefore, reducing the power consumption and increasing the processing rate for the double SHA-
256 algorithm is currently an important research trend. In this paper, we propose a high-data-rate low-power
hardware architecture named the compact message expander (CME) double SHA-256. The CME double
SHA-256 architecture combines resource sharing and fully unrolled datapath technologies to achieve both a
high data rate and low power consumption. Notably, the CME algorithm utilizes the double SHA-256 input
data characteristics to further reduce the hardware cost and power consumption. A review of the literature
shows that the CME algorithm eliminates at least 9.68% of the 32-bit XOR gates, 16.49% of the 32-bit
adders, and 16.79% of the registers required to calculate double SHA-256. We synthesized and laid out the
CME double SHA-256 using CMOS 0.18 µm technology. The hardware cost of the synthesized circuit is
approximately 13.88% less than that of the conventional approach. The chip layout size is 5.9mm×5.9mm,
and the correctness of the circuit was verified on a real hardware platform (ZCU 102). The throughput of
the proposed architecture is 61.44 Gbps on an ASIC with Rohm 180nm CMOS standard cell library and
340 Gbps on a FinFET FPGA 16nm Zynq UltraScale+MPSoC ZCU102.

INDEX TERMS Bitcoin mining, SHA-256, unrolling, ASIC.

I. INTRODUCTION
Bitcoin is the most popular cryptocurrency and was invented
by Satoshi Nakamoto in 2008 [1], [2]. Leveraging blockchain
technology, Bitcoin uses a distributed public ledger to record
all transactions without any third party [3]. Each block added
to the public distributed ledger is created by hashing a 1024-
bit message, including a version number, a hash of the previ-
ous block, a hash of the Merkle root, timestamp, target value,
and a nonce. In the 1024-bit message, the nonce must be valid
to create a hashing output smaller than the specified target
value. Therefore, miners relentlessly seek valid nonces when
adding new blocks. The process of finding a valid nonce is
called Bitcoin mining [4].

The associate editor coordinating the review of this manuscript and

approving it for publication was Wei Huang .

In Bitcoin mining, the double SHA-256 algorithm is used
to compute the hash value of the bitcoin block header, which
is a 1024-bit message. The use of double SHA-256 protects
against the length extension attack [5]. Technically, SHA-
256 consists of a message expander (ME) and a message
compressor (MC). During the SHA-256 operation, the ME
expands the 512-bit input message into 64 chunks of 32-bit
data. The MC compresses these 64 32-bit data chunks into a
256-bit hashed output.

Most of the energy consumption required for maintaining
the Bitcoin network stems from calculating double SHA-
256 values. Therefore, reducing the hardware cost and
energy consumption of the SHA-256 circuit is a popular
research trend. In [6], the authors optimized the double
SHA-256 operation for Bitcoin mining from an algorithmic
perspective, but no hardware design was available to evaluate

139634 This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/ VOLUME 8, 2020

https://orcid.org/0000-0002-4272-0132
https://orcid.org/0000-0002-2744-0079
https://orcid.org/0000-0003-0586-090X


H. L. Pham et al.: Double SHA-256 Hardware Architecture With CME

the power consumption. From a hardware perspective,
[7]–[22] proposed solutions to improve SHA-256. For
instance, the authors of [7] employed the carry-save adder
to improve the computation time of the critical path, which
increased the maximum frequency and processing rate,
while [8]–[12] used pipeline technology to improve the SHA-
256 throughput. A cache memory technique was presented
in [13] to reuse data, minimize the critical paths, and reduce
the number of memory accesses for SHA-256 processing.
The authors of [14] adopted the unfolding technique to reduce
the computing latency for SHA-256. The authors of [15]
proposed using a 7-3-2 array compressor to reduce the critical
path delay for SHA-256. The carry-save adders technique
is used in [16] to reduce the latency of additions in the
SHA-256 algorithm. The authors of [17] used a combination
of techniques such as carry-save-adders and pipelines to
increase the performance of SHA-256. Pipeline and unrolled
techniques are presented in [18] and [19] to increase the
throughput of SHA-256. The authors of [20]–[22] presented
a SHA-256 implementation on an FPGA for performance
evaluation, with no technique optimization. Despite pro-
viding improvements in terms of hardware cost and power
consumption, the hardware circuits developed in [7]–[22]
have low processing rates because they require several (up
to 64) clock cycles to compute a single 256-bit hash value.

To be applicable for Bitcoin mining, a SHA-256 circuit
needs not only efficient hardware and power cost but also
a high processing rate. To reach a high processing rate,
the authors in [23] proposed the fully unrolled SHA-256 dat-
apath for Bitcoin mining hardware. Additionally, the fully
unrolled SHA-256 datapath can be designed to run on an
application-specific integrated circuit (ASIC) [24], which
can reach even higher processing rates. However, because
an ASIC implementation of a fully unrolled datapath has
high power consumption and hardware costs, [25]–[28] pro-
posed eliminating an 8-round unrolled datapath in the double
SHA-256 architecture to reduce the chip area. Furthermore,
several technical solutions, such as carry-save adders and
optimized message compressor (MC) architectures have
been proposed and applied to reduce the hardware and
power costs.

In this study, we propose a new approach for reducing the
hardware cost and power consumption of high processing rate
fully unrolled SHA-256 architecture. We analyze the charac-
teristics of the 1024-bit input data of double SHA-256 and
propose compact message expander (CME) algorithms that
significantly reduce the hardware cost required to compute
the message expander (ME) process of SHA-256. In addition,
we propose a CME double SHA-256 accelerator architec-
ture that adopts the proposed CME algorithms to reduce the
power consumption. Our architecture generates one 256-bit
hash value per clock cycle. We implemented the proposed
double SHA-256 accelerator architectures in ASIC CMOS
0.18 µm technology to demonstrate their energy efficiency.
The Verilog code and synthesized results of the experiment
are publicly available from GitHub.

FIGURE 1. Overview architecture of double SHA-256 in Bitcoin Mining.

The remainder of this paper is organized as follows.
Section II presents a preliminary study. Section III describes
our proposed CME double SHA-256 architecture, and the
CME algorithms and hardware circuits are explained in
detail. Section IV reports our evaluation in terms of theory,
ASIC, and FPGA experiments. Finally, Section V concludes
the paper.

II. PRELIMINARIES
A. DOUBLE SHA-256 ARCHITECTURE FOR
BITCOIN MINING
Fig. 1 shows the overview architecture of double SHA-
256 applied for Bitcoin mining. The input to the double SHA-
256 process is a 1024-bit message, which includes a 32-bit
version, a 256-bit hash of the previous block, a 256-bit hash
of theMerkle root, a 32-bit timestamp, a 32-bit target, a 32-bit
nonce, and 384 bits of padding. The 1024-bit message is split
into two 512-bit message parts; then SHA-2561 calculates
a hash value of the first 512-bit message, and SHA-2562
computes a hash value of the final 512-bit message. Due to
the double SHA-256 requirement, the 256-bit hash output
from SHA-2562 must be compressed into the final 256-bit
hash by using SHA-2563. In the Bitcoin mining process,
the final 256-bit hash output from SHA-2563 is compared to
the target value. If the final hash is smaller than the target
value, the valid 32-bit nonce is specified, and a new Bitcoin
block is successfully created. Otherwise, the 32-bit nonce is
increased by one and the double SHA-256 circuit recomputes
to find a new hash value. This process is repeated until the
256-bit hash of SHA-2563 meets the target requirement.

Computation inside all three blocks (SHA-2561, SHA-
2562, and SHA-2563) follows the SHA-256 algorithm, which
has two processes: a message expander (ME) and a message
compressor (MC).

Algorithm 1 shows the ME process, which expands the
512-bit input message into 64 chunks of 32-bit data Wj (0 ≤
j ≤ 63). In the first 16 rounds, the ME parses the 512-bit
message into 16 32-bit data chunks (denoted as Wj, j = 0 to
15 where j is the round index). In the final 48 rounds, the ME
calculates 48 chunks of 32-bit data Wj (17 ≤ j ≤ 63). Three
32-bit adders and two logical functions σ0(x) and σ1(x) are

VOLUME 8, 2020 139635



H. L. Pham et al.: Double SHA-256 Hardware Architecture With CME

Algorithm 1Message Expander (ME)
• For j from 0 to 15 {
Wj = Mj }

• For j from 16 to 63 {
Wj = σ1(Wj−2) + Wj−7 + σ0(Wj−15) + Wj−16 }

needed to compute each Wj (17 ≤ j ≤ 63) value. Fig. 2
shows the conventional circuit C required to calculate Wj
(17 ≤ j ≤ 63), in which the logical functions σ0(x) and σ1(x)
are respectively defined as follows:

σ0(x) = S7(x)⊕ S18(x)⊕ R3(x) (1)

σ1(x) = S17(x)⊕ S19(x)⊕ R10(x) (2)

Algorithm 2 shows the MC process, which compresses the
64 chunks of Wj (0 ≤ j ≤ 63) into a 256-bit hash value.
The process involves three main steps: initialization, loop,
and add. In the initialization step, eight internal hash values
(denoted as a, b, c, d, e, f , g, h) are assigned to eight initial
hashes H1, H2,. . . ,H8 defined by the SHA-256 algorithm.
In the loop step, the internal hash values a, b, c, d, e, f , g, h
are calculated and updated through 64 loops. To compute
a, b, c, d, e, f , g, h in each loop, logical functions such as
60(x), 61(x), Ch(x, y, z), andMaj(x, y, z) are used.

60(x) = S2(x)⊕ S13(x)⊕ S22(x) (3)

61(x) = S6(x)⊕ S11(x)⊕ S25(x) (4)

Ch(x, y, z) = (x ∧ y)⊕ (¬x ∧ z) (5)

Maj(x, y, z) = (x ∧ y)⊕ (x ∧ z)⊕ (y ∧ z) (6)

In the add step, the final hash is computed by adding the
initial hashes H1, H2,. . . ,H8 to the final internal hashes
a, b, c, d, e, f , g, h resulting from the 64 loops.

Algorithm 2Message Compressor (MC)
(1) Initialization:

a = H1; b = H2; c = H3; d = H4; e = H5; f = H6;
g = H7; h = H8

(2) Loop:
For j from 0 to 63 {
• T1 = h + 61(e) + Ch(e, f, g) + Kj + Wj
• T2 = 60(a) + Maj(a, b, c)
• h = g; g = f; f = e; e = d + T1; d = c; c = b; b =
a; a = T1 + T2 }

(3) Add:
HO1 = a+ H1; HO2 = b+ H2; HO3 = c+ H3;
HO4 = d + H4; HO5 = e+ H5; HO6 = f + H6;
HO7 = g+ H7; HO8 = h+ H8;

B. THE PROTOTYPE DOUBLE SHA-256 ARCHITECTURE
To be applicable for Bitcoin mining, double SHA-256 hard-
ware should provide a high processing rate. The current
optimal solution is to develop and implement a double SHA-
256 accelerator in ASIC chips. In [23], the authors proposed

FIGURE 2. Conventional circuit C required for message expander (ME).

FIGURE 3. The Prototype 64-round unrolled datapath architecture for ME
and MC processes of each SHA-256 circuit.

an ASIC-based double SHA-256 accelerator that imple-
mented ME and MC processes in a fully unrolled datapath
for high processing. Technically, the fully unrolled SHA-
256 datapath enables the 64 rounds of ME and MC to run
in parallel and be pipelined.

Fig. 3 illustrates a prototype SHA-256 architecture with
64-round unrolled datapaths for the MC and ME processes.
The unrolled ME datapath is denoted as Blockj (j =
0, . . . , 63), while the unrolled MC datapath is denoted as
Loopj (j = 0, . . . , 63).

Because the goal of this study is to optimize the ME pro-
cess, we focus specifically on a hardware implementation for
ME. For the first 16 blocks (i.e., Blockj (j = 0, . . . , 15)), each
ME block requires a 512-bit register (or 16 32-bit registers)
to pipeline and store the 16 Wj (j = 0, . . . , 15) values. For
the last 48 blocks, i.e., Blockj (j = 16, . . . , 63), each block
needs a 512-bit register (or 16 32-bit registers) and C circuits
(Fig. 2) to computeWj (j = 16, . . . , 63). As shown in Fig. 1,
the double SHA-256 accelerator for Bitcoin mining requires
three individual SHA-256 circuits. This means that the accel-
erator must implement 48×3 = 144 C circuits (in the 16th to
63th blocks of SHA-2561, SHA-2562, and SHA-2563). Thus,
it is necessary to both optimize the C circuit and reduce the
number of C circuits required for double SHA-256.

C. THE OPTIMIZED DOUBLE SHA-256 ARCHITECTURE
The prototype double SHA-256 accelerator has high power
consumption because the fully unrolled datapath results
in a large chip area. To reduce the power consumption,
[25]–[28] proposed the optimized double SHA-256 acceler-
ator, in which a 64-round unrolled datapath is optimized into
a 60-round unrolled datapath.

139636 VOLUME 8, 2020



H. L. Pham et al.: Double SHA-256 Hardware Architecture With CME

FIGURE 4. The optimized 60-round unrolled datapath architecture for the
ME process of SHA-2562 and SHA-2563.

Fig. 4 shows a schematic diagram of the 60-round unrolled
ME datapath used in SHA-2562 and SHA-2563. In SHA-
2562, the 60-round unrolled ME datapath includes rounds
4 to 63 (denoted as Blockj (j = 4, . . . , 63)). In SHA-
2563, the 60-round unrolled ME datapath includes rounds
1 to 60 (denoted as Blockj (j = 1, . . . , 60)). Consequently,
8 ME blocks are eliminated compared with the prototype
architecture mentioned above.

III. THE PROPOSED CME DOUBLE
SHA-256 ARCHITECTURE
A. ARCHITECTURAL OVERVIEW
In Bitcoin mining, the 512 bits of data input to SHA-2561
does not change frequently because it does not include the
32-bit nonce field. Conversely, the 512 bits of data input to
SHA-2562 are updated frequently because of the changing
value of the nonce field. Whenever the output of SHA-2562
changes, SHA-2563 also needs to be recomputed. Because
the nonce field has 32 bits, each computation of SHA-2561
requires SHA-2562 and SHA-2563 to recompute their values
up to 232 times.
Therefore, we propose the CME double SHA-256 accel-

erator architecture, as shown in Fig. 5. To achieve a high
processing rate as well as efficient hardware and power cost,
we implement a resource-sharing architecture for SHA-2561
and a fully unrolled datapath architecture for SHA-2562 and
SHA-2563. The SHA-2561 has a single Block0−63 circuit
for calculating Wj (j = 0, . . . , 63) and a single Loop0−63
circuit for calculating the internal hashes a, b, c, d, e, f , h
in 64 clock cycles. Each clock cycle computes one Wj value
and updates the internal hash one time.

Similar to the conventional optimized double SHA-
256 architecture, our SHA-2562 has 60-round unrolled dat-
apaths (j = 4, . . . , 63), and our SHA-2563 has 60-round

FIGURE 5. Block diagram of the proposed CME double
SHA-256 accelerator for Bitcoin mining.

unrolled datapaths (j = 1, . . . , 60). To reduce the hardware
and power costs of SHA-2562 and SHA-2563, we propose
using CME algorithms and their equivalent hardware circuits.
In Fig. 5, the CME for SHA-2562 is denoted as CME2j (j =
4, . . . , 63), and the CME for SHA-2563 is denoted as CME3j
(j = 1, . . . , 60).
Using pipelined and parallel operations, SHA-2562 and

SHA-2563 can produce an output hash every clock cycle.
However, the resource-sharing SHA-2561 circuit produces
one hash value every 64 clock cycles. The low processing rate
of the SHA-2561 circuit does not affect the final processing
rate of the CME double SHA-256 accelerator because one
SHA-2561 output value can be used to calculate SHA-2562
and SHA-2563 up to 232 times. The final processing rate of
the CME-based double SHA-256 is one 256-bit hash value
per clock cycle.

In the following subsections, we explain our proposed
CME algorithms and the equivalent hardware designs.

B. COMPACT MESSAGE EXPANDER (CME) ALGORITHM
We propose the CME algorithms by analyzing the character-
istics of the input data of SHA-2562 and SHA-2563.

1) CME FOR SHA-2562
As seen in Fig. 1, the 512 bits of data input to SHA-2562
include a 32-bit Merkle root hash, a 32-bit time stamp,
a 32-bit target, a 32-bit nonce, and a 384-bit padding+length

VOLUME 8, 2020 139637



H. L. Pham et al.: Double SHA-256 Hardware Architecture With CME

FIGURE 6. Contents of the padding+length field for SHA-2562 (a), and
SHA-2563 (b).

field. It is worth noting that most of the content of the
padding+length field consists of zeros (refer to Fig. 6a).
Assume that the 512 bits of data are separated into 16 32-bit

wordsMj (j = 0, . . . , 15). The CME operation for SHA-2562
is illustrated in Algorithm 3. The algorithm processes the data
in 64 loops. During the first 16 loops, Wj (j = 0, . . . , 15)
are assigned to Mj (j = 0, . . . , 15). The values of Wj (j =
5, . . . , 14) are all zero because they are equivalent to the zero
values of the padding+length field. In addition, W4 and W15
are constants. During the last 48 loops, the CME calculates
Wj (j = 16, . . . , 63) by using (7):

Wj = σ1(Wj−2)+Wj−7 + σ0(Wj−15)+Wj−16. (7)

The logical functions σ0(x) and σ1(x) are shown in (1) and (2),
respectively.

Utilizing the zeros or constant values ofWj (j = 4, . . . , 15),
we can optimize the calculation of (7). For example, theW16

Algorithm 3 Compact Message Expander in SHA-2562
• For j from 0 to 3 {
Wj = Mj }

• W4 = 32’h80000000
• For j from 5 to 14 {
Wj = 32’h00000000 }

• W15 = 32’h00000280
• W16 = σ0(W1)+W0
• For j from 17 to 19 {
Wj = σ1(Wj−2) + σ0(Wj−15) + Wj−16 }

• W20 = σ1(W18)+W4
• W21 = σ1(W19)
• For j from 22 to 29 {
Wj = σ1(Wj−2)+Wj−7 }

• W30 = σ1(W28)+W23 + σ0(W15)
• For j from 31 to 63 {
Wj = σ1(Wj−2)+Wj−7 + σ0(Wj−15)+Wj−16 }

calculation can be analyzed as follows:

W16 = σ1(W14)+W9 + σ0(W1)+W0

= 0+ 0+ σ0(W1)+W0

= σ0(W1)+W0 (8)

Note that W14 = 0 and W9 = 0. By comparing (7) with (8)
for calculating W16, it can be seen that the logical function
σ1(x) and two 32-bit adders have been eliminated.

The computations of Wj(j = 17, . . . , 63) are analyzed
and optimized similarly. The final results are shown in
Algorithm 3.

2) CME FOR SHA-2563
The 512 bits of input data to SHA-2563 include the 256-bit
hash output from SHA-2562 concatenated with a 256-bit
padding+length field. The value of the first 32 bits of
padding is 32′h80000000, while the value of the last 32 bits
padding+length is 32′h00000100. The remaining values are
all zeros (refer to Fig. 6b).

We divide the 512-bit input data into 16 32-bit words
Mj (j = 0, . . . , 15). The CME operation for SHA-2563 is
illustrated in Algorithm 4. It processes the data in 64 loops.
In the first 16 loops, Wj (j = 0, . . . , 15) are assigned to Mj
(j = 0, . . . , 15). The values of Wj (j = 9, . . . , 14) are all
zero because they are equivalent to the zero values of the
padding+length field. In addition,W8 andW15 are constants.
In the last 48 loops, CME calculates Wj (j = 16, . . . , 63)
using (7).

Utilizing the zero or constant characteristics of Wj (j =
8, . . . , 15), we optimize the calculation of (7) for calcu-
lating Wj(j = 16, . . . 63). The final results are shown in
Algorithm 4.

Utilizing Algorithms 3 and 4, we can significantly reduce
the number of 32-bit adders and the number of logical func-

Algorithm 4 Compact Message Expander in SHA-2563
• For j from 0 to 7 {
Wj = M

(i)
j }

• W8 = 32’h80000000
• For j from 9 to 14 {
Wj = 32’h00000000 }

• W15 = 32’h00000100
• W16 = σ0(W1) + W0
• For j from 17 to 21 {
Wj = σ1(Wj−2)+ σ0(Wj−15)+Wj−16 }

• For j from 22 to 23 {
Wj = σ1(Wj−2) + Wj−7 + σ0(Wj−15)+Wj−16 }

• W24 = σ1(W22)+W17 +W8
• For j from 25 to 29 {
Wj = σ1(Wj−2)+Wj−7 }

• W30 = σ1(W28)+W23 + σ0(W15)
• For j from 31 to 63 {
Wj = σ1(Wj−2)+Wj−7 + σ0(Wj−15)+Wj−16 }

139638 VOLUME 8, 2020



H. L. Pham et al.: Double SHA-256 Hardware Architecture With CME

FIGURE 7. The proposed shortened computation circuits: SC1, SC2, SC3,
and SC4 for the CME process.

tions σ0(x) and σ1(x) required to calculate W16 to W63 in
SHA-2562 and SHA-2563.

C. CME HARDWARE CIRCUITS
From Algorithm 3 and 4, we propose four types of shortened
computation (SC) circuits as shown in Fig. 7. Compared with
the traditional C circuit shown in Fig. 2, the proposed SC1
eliminates two 32-bit adders and the logical function σ1(x);
SC2 eliminates one 32-bit adder; SC3 eliminates two 32-bit
adders and the logical function σ1(x); and SC4 eliminates
one 32-bit adder and the logical function σ0(x). Note that
eliminating either σ0(x) or σ1(x) also eliminates two 32-bit
rotations, one 32-bit shift, and two 32-bit XOR circuits.

Based on the C circuit shown in Fig. 2 and the four types
of SC circuits shown in Fig. 7, we develop hardware architec-
tures for the CME processes of SHA-2562 and SHA-2563 as
shown in Fig. 8 and Fig. 10, respectively.
The proposed CME circuit for SHA-2562 (Fig. 8) is

divided into three phases. Phase 1 includes CME24 to
CME219. Each operation requires a 128-bit register (or four
32-bit registers) to store and pipeline W0 to W3. In phase 1,
instead of using the conventional C circuit in Fig. 2, the SC1
and SC2 circuits in Fig. 7 are implemented to reduce hardware
costs. Phase 2 includes CME220 to CME230, for which the
SC2 and SC3 circuits are appropriately implemented (refer to
algorithm 3). Phase 3 includes CME231 to CME263, and the
C circuit is implemented in all the blocks of this phase.

The three phases are classified based on the characteris-
tics of the datapath bit width. In phase 1, the datapath bit-
width is constant (128 bits). The 384-bits of W4 to W15 are
fixed constants. Hence, phase 1 do not need to store and
pipeline W4 to W15. In phase 2, W20 to W30 must be stored
and pipelined. Thus, the datapath bit-width in phase 2 is
appropriately increased from 160 bits to 480 bits. In phase
3, the datapath bit-width of CME231 to CME257 is 512 bits
without optimization. To eliminate unnecessary values ofWj
in subsequent blocks, the datapath bit-width of CME257 to
CME263 appropriately reduces from 480 bits to 32 bits. To
understand the reason for the datapath bit-width adjustment,

FIGURE 8. Block diagram of the 60-round unrolled datapath
CME2 process for SHA-2562.

FIGURE 9. Detailed computational circuit of the CME2 process for
SHA-2562.

we show the detailed data flow and computational circuit
of the CME2 process in Fig. 9. In this figure, the number
represents the j index ofWj. For example, we need four 32-bit

VOLUME 8, 2020 139639



H. L. Pham et al.: Double SHA-256 Hardware Architecture With CME

FIGURE 10. Block diagram of the 60-round unrolled datapath
CME3 process for SHA-2563.

registers (equivalent to 128 bits) to store W0 to W3 in blocks
CME24 to CME215. As another example, CME232 needs
sixteen 32-bit registers (16× 32 = 512 bits) to pipeline store
16 values of Wj (j=16, 17,. . . ,31), which are required for the
calculation of its following blocks.

Similarly, the proposed CME circuit for SHA-2563 has
three phases (Fig. 10). Phase 1 includes CME31 to CME323.
Because of the zero and constant property of input data
W8 to W15, all blocks of phase 1 have the same datapath
of 256 bits only (which is required to pipeline store eight
32-bit valuesW0 toW7). A large number of registers are thus
eliminated. In this phase, circuits SC1, SC2, and C are appro-
priately implemented (refer to algorithm 4). Phase 2 includes
blocks from CME324 to CME330. Circuits SC4, SC3, and
SC2 are appropriately implemented (refer to algorithm 4).
Phase 3 includes blocks from CME331 to CME360. We do not
implement blocks from CME361 to CME363 because we can
detect early whether the final hash is smaller than the target
value without waiting for results from CME361 to CME363.
Circuit C is implemented in all blocks.
Three phases are classified based on the characteristics

of the datapath bit-width. In phase 1, the datapath bit-width
is constant (256 bits).The 256-bits of W8 to W15 are fixed
constants and do not need to be stored and pipelined in
phase 1. In phase 2,W24 toW30 must be stored and pipelined.
Therefore, the datapath bit-width of CME324 to CME330 is

FIGURE 11. Detailed computational circuit of the CME3 process for
SHA-2563.

appropriately increased from 288 bits to 480 bits. In phase 3,
the datapath bit-width of CME331 to CME3 53 is 512 bits
without optimization. The datapath bit-width of CME354 to
CME3 60 is reduced from 480 bits to 32 bits. To prove that
the datapath bit-width adjustment is appropriate, we show
the detailed data flow and the computational circuit of the
CME3 process in Fig. 11. In this figure, the number represents
the j-th index of Wj. For example, each block from CME30
to CME215 requires eight 32-bit registers (equivalent to
8 × 32 = 256 bits) to store W0 to W7. These values are
required to calculate the blocks from CME316 to CME222.
As another example, block CME359 requires five 32-bit
registers (5 × 32 = 160 bits) to store W44, W45, W53, W58,
and W59, which are required for the CME360 calculation.

IV. EVALUATION
In this section, we evaluate the efficiency of the CMEmethod
when it is applied in the CME double SHA-256 accelera-
tor. We evaluate the performance from three aspects: theory,
ASIC, and FPGA experimental results.

A. THEORETICAL REVIEW
For comparison purposes, we developed three hardware cir-
cuits, all of which follow the architecture proposed in Fig. 5.
The three circuits differ only in how they implement the
ME processes of SHA-2562 and SHA-2563. The first circuit
(named Prototype double SHA-256) was proposed in [23]
and mentioned in section II-B. The second circuit (named

139640 VOLUME 8, 2020



H. L. Pham et al.: Double SHA-256 Hardware Architecture With CME

TABLE 1. Theory comparison: hardware-resource required for ME
process.

Optimized double SHA-256) was proposed in [25]–[27], and
[28], and is mentioned in Section II-C. The last circuit is our
proposed CME double SHA-256.

Table 1 shows the theoretical hardware resources required
by the three architectures in terms of the number of adders,
XOR gates, rotations, shifts, and registers. In Table 1, SHA-
2562 and SHA-2563 are the evaluation targets because they
are the most hardware-intensive parts.

Compared to the prototype and optimized architectures,
the proposed architecture respectively decreases the total
number of 32-bit adders by approximately 19.1% and
16.49%, the total number of 32-bit XOR gates by approx-
imately 12.5% and 9.68%, and the total number of 32-bit
rotation operations, by approximately 11% and 8.17%.

In addition, the proposed architecture reduces the total
number of 32-bit shift operations by approximately 19.8%
and 17.2% compared to the prototype and optimized archi-
tectures, respectively.

Notably, the proposed architecture eliminates 33.2% and
16.79% of the total number of registers compared to the
prototype and optimized architectures, respectively.

B. ASIC EXPERIMENT
1) AREA AND POWER APPROACH
To ensure a fair comparison, the three double SHA-256 cir-
cuits were coded in Verilog and synthesized in an ASIC
using the Synopsys Design Compiler with the Rohm 0.18µm
CMOS standard cell library [29]. Table 2 shows the syn-
thesized area of the three architectures. Note that the total
area is the sum of the combinational and non-combinational
area (registers), as well as other types of circuits, includ-
ing buff/Inv, wires, etc. The total area of the proposed

TABLE 2. Practical comparison: The ASIC synthesized area of three
double SHA-256 architectures.

FIGURE 12. The ASIC synthesis power of the prototype, the optimized,
and the proposed double SHA-256 accelerators.

CME double SHA-256 is smaller by 17.6% and 13.9%
compared to the prototype and optimized architectures,
respectively.

Fig. 12 summarizes the energy consumption of the three
architectures obtained from the ASIC synthesis results.
In terms of cell internal power, the proposed double SHA-
256 circuit consumes 133 mW, which is a reduction
of 15.82% and 11.92% compared to the prototype and opti-
mized architectures, respectively. In terms of net switching
power, the proposed CME double SHA-256 circuit con-
sumes 95 mW, which constitutes reductions of 12.04%
and 9.52% compared to prototype and optimized architec-
tures, respectively. These energy consumption reductions
are due to the smaller hardware circuit, which matches our
expectations.

Based on the timing report of ASIC synthesis, the max-
imum frequency of the three architectures is 60 MHz.
This means that the architectures achieve throughput of
1024 bits × 60 MHz = 61.44 Gbps.
In addition, we successfully laid out the proposed CME

double SHA-256 circuit in ASIC technology with the Rohm
0.18µm CMOS standard cell library. Fig. 13 shows the chip
layout, and Fig. 14 shows the chip energy distribution map.
The size of the chip layout is 5.9 mm× 5.9 mm.

VOLUME 8, 2020 139641



H. L. Pham et al.: Double SHA-256 Hardware Architecture With CME

TABLE 3. A comparison of ASIC synthesis results.

FIGURE 13. Post-layout circuit of the proposed CME double
SHA-256 accelerator.

FIGURE 14. Energy distribution map of the post-layout CME double
SHA-256 circuit.

2) PROCESSING RATE AND HARDWARE EFFICIENCY
APPROACH
In this experiment, we prove that the ASIC design of our
proposed CME double SHA-256 architecture outperforms
previous works in terms of processing rate and hardware
efficiency. To ensure a fair comparison, we also synthesized
our architecture in ASIC TSMC 0.18µm technology using
the CMOS standard cell library. We then compare our results
with the previous works in [15], [16], and [17].

The comparison is shown in Table 3. It is worth noting
that the designs of [15], [16], and [17] are single SHA-
256 circuits. To be applied to Bitcoin mining, these circuits

must repeat their calculations three times to generate a double
SHA-256 hash value from the 1024-bit input message. The
number of cycles required to compute the double SHA-256
(denoted by Cd ) is thus triple the number of cycles required
to compute a single SHA-256 (denoted by Cs); refer to (9).

Cd = 3× Cs (9)

Then, we calculate the processing rate for double SHA-256
(Rd ) by using (10). The BlockSize is 1024 bits.

Rd =
BlockSize× Frequency

Cd
(10)

From the Rd and area results, the hardware efficiency for
double SHA-256 (denoted by Ed ) is computed by (11).

Ed =
Rd
Area

(11)

Table 3 summarizes the synthesized area results, the cal-
culated processing rate, and the hardware efficiency. The
processing rate (Rd ) and hardware efficiency (Ed ) of our
proposed architecture are significantly improved compared
to those of the works in [15], [17], and [16]. The numerical
results are as follows.

In terms of processing rate (Rd ), our CME double SHA-
256 architecture is faster than the designs proposed in [15],
[16], and [17] by 86, 60, and 47 times, respectively.

In terms of hardware efficiency (Ed ), our CME double
SHA-256 architecture improves the efficiency by 102%,
23%, and 194% compared to the designs in [15], [16], and
[17], respectively.

3) FPGA SYNTHESIS RESULTS
To ensure a fair comparison with other existing SHA-
256 architectures, such as [18]–[21], [22], and [23],
we synthesized the proposed CME double SHA-256 cir-
cuit on four Xilinx FPGA boards, including Kintex Ultra-
Scale (XCKU5P-ffva676-3-e), Virtex 7(XC7VX1140T-FLG
1926-2), Artix 7 (XC7A200T-FBG484-1), and Zynq
UltraScale+ ZCU102 (XCZU9EG-FFVB1156-2-e).
The results are shown in Table 4. It is worth noting that

the existing architectures in [18]–[22] and [23] are single
SHA-256 architectures that must repeat the computation
three times to generate a double SHA-256 hash value for
Bitcoin mining. Thus, the number of clock cycles required

139642 VOLUME 8, 2020



H. L. Pham et al.: Double SHA-256 Hardware Architecture With CME

FIGURE 15. Diagram of the SoC-based CME double SHA-256 system for implementation and verification.

TABLE 4. A comparison of FPGA synthesis results.

to compute a double SHA-256 is tripled. We focus on evalu-
ating the hardware efficiency (Mbps/LUT) of the single and
double SHA-256 architectures in this subsection. In general,
the proposed CME double SHA-256 outperforms the existing
SHA-256 architectures in terms of hardware efficiency. The
numerical results are as follows.

On the Kintex UltraScale FPGA, the hardware efficiency
(Mbps/LUT) of the proposed CME double SHA-256 archi-
tecture is enhanced by 1,047% (9.52 vs. 0.83), 488% (9.52 vs.
1.62), and 7% (9.52 vs. 8.92) compared to the hardware
efficiencies of the architectures in [18], [19], and [23],
respectively.

On the Virtex 7 FPGA, the hardware efficiency of the
proposed architecture is enhanced by 7% (5.86 vs. 5.5), 762%
(5.86 vs. 0.68), and 7% (5.86 vs. 5.48) compared to the the
hardware efficiencies of the architectures in [20], [21], and
[23], respectively.

On the Artix 7 FPGA, the hardware efficiency of the pro-
posed architecture is enhanced by 332% (2.94 vs. 0.68) and
7% (2.94 vs. 2.76) compared to the the hardware efficiencies
of the architectures in [22] and [23], respectively.

On Zynq UltraScale+ ZCU102 FPGA, the hardware effi-
ciency of the proposed architecture is enhanced by 7%
(8.32 vs. 7.8) compared to the hardware efficiency of the
architecture in [23].

C. FPGA EXPERIMENT
1) FUNCTIONAL VERIFICATION ON A REAL SoC HARDWARE
PLATFORM
To prove that the circuit operates correctly not only in the
software simulation tool but also on real hardware, we built
a System on Chip (SoC) platform to execute the proposed
CME double SHA-256 circuit. The SoC platform overview
is shown in Fig. 15.

VOLUME 8, 2020 139643



H. L. Pham et al.: Double SHA-256 Hardware Architecture With CME

FIGURE 16. Real-world experiments with the SoC-based CME double
SHA-256 devices.

TABLE 5. Execution time of double SHA-256 on different hardware
platforms.

The platform includes two primary components: a host PC
and a Zynq UltraScale+ ZCU102 evaluation board. The host
PC exchanges data with the ZCU102 board via JTAG and
UART cables.

The ZCU102 board includes an ARMv8 microprocessor,
a programmable logic (PL), and a clock generator. Our devel-
oped circuit, CME double SHA-256, is embedded in the
PL of ZCU102. The PL also has block ram (BRAM) and
an integrated logic analyzer (ILA). We used the BRAM to
store the valid nonce value for Bitcoin mining and ILA to
monitor the outputs of the CME double SHA-256 circuit.
The maximum operating frequency of the ZCU102 board is
333 MHz.

The host PC consists of a Vivado, a Software Develop-
ment Kit (SDK), and a Bitcoin Mining Verification (BMV)
program. Vivado is a software suite for SoC development.
We use the Vivado suite to design and load the SoC-based
system onto the ZynqUltraScale+ZCU102 board.Moreover,
the Vivado helps to export the outputs of the CME double
SHA-256 circuit in the ZCU102 into an ILA result file for
verification by the BMV program. The SDK is intended for
the development of embedded software applications for SoC

TABLE 6. Hash rate and power consumption of several
SHA-256 architectures.

systems.We use the SDK to embed the real block information
from the Bitcoin blockchain network onto our SoC-based
system. The BMV is a C-code program that verifies the
correctness of the embedded CME double SHA-256 circuit.
The BMV executes a double SHA-256 on the host PC and
compares the results with the outputs of the CME double
SHA-256 circuit.

The abovementioned SoC system has been used to thor-
oughly verify the correctness of the CME double SHA-
256 circuit at different operating frequencies, such as
333 MHz (maximum frequency) and 200 MHz. All the cases
result in 100% accuracy, which proves that the proposed
CME double SHA-256 architecture works correctly in a real
hardware platform. The maximum processing rate of the
circuit on the ZCU102 board is 333 MHash/s (or 333 MHz×
1024 bit/CLK = 340.992 Gbps).

Fig. 16 shows an image of the SoC evaluation platform,
which includes a host PC (Toshiba Satellite B652 / G Core i5
3320M 2.6GHz / 4GB) and the UltraScale+ ZCU102 evalu-
ation board.

2) PROCESSING-RATE EVALUATION ON A REAL
HARDWARE PLATFORM
In this subsection, we evaluate the processing rate and power
consumption of the proposed CME double SHA-256 on real
hardware platformZCU102 to prove that our architecture out-
performs other high-performance platforms, including CPUs,
GPUs, and the existing SHA-256 architectures.

Table 5 shows the execution time of the double SHA-
256 algorithm on several hardware platforms, including a
CPU, GPU, and FPGA. To compute the same number of
hashes (e.g., 500.000 hashes) the proposed architecture run-
ning on the FPGA ZCU102 requires only 1.5 ms, while
the CPU i7-6950X, CPU XEON 6144, and GPU Tesla
V100 require 770 ms, 740 ms, and 140 ms, respectively,

139644 VOLUME 8, 2020



H. L. Pham et al.: Double SHA-256 Hardware Architecture With CME

which means that the proposed architecture reduces the
execution time by 513 times, 493 times, and 93 times,
respectively.

Table 6 summarizes the hash rate and power consumption
from several studies that reported double SHA-256 results.
As the table shows, the hash rate of our proposed architecture
running on an FPGA is significantly higher than those of the
works in [30] and [31]. Although [32] was executed on an
ASIC and our architecture was executed on an FPGA, our
architecture still achieves the same hash rate but consumes
less power.

V. CONCLUSION
Bitcoin mining is an important process in keeping the Bitcoin
network secure; however, it consumes massive amounts of
energy. To reduce the power consumption and increase the
processing rate of the Bitcoin mining process, we proposed
a CME double SHA-256 hardware circuit in this paper. The
architecture includes three SHA-256 circuits in which the
first circuit (SHA-2561) is a resource-sharing architecture
while the last two circuits (SHA-2562 and SHA-2563) are
fully unrolled datapath architectures. The combination of
these two types of architecture results in a high process-
ing rate but low hardware costs. Specifically, we propose
several compact message expander (CME) algorithms and
associated hardware architectures to further reduce the power
consumption and hardware costs. Our proposed circuit gen-
erates one 256-bit hash value per clock cycle. We thoroughly
verified and evaluated the proposed circuit on both ASIC and
FPGA platforms. The experimental results showed that the
proposed circuit outperforms other high-performance CPU
and GPU platforms for computing double SHA-256 values.
The proposed circuit also outperforms existing works with
specific hardware circuits for computing the double SHA-
256 values. The double SHA-256 circuit was laid out on
the ASIC with Rohm 0.18 µm CMOS standard cell library,
resulting in a chip size of 5.9mm×5.9mm and the throughput
of 61.44 Gbps. The circuit is also proven to work correctly in
a real hardware platform (ZCU102), achieving a processing
rate of 340.992 Gbps.

Blockchain is not only the Bitcoin network. Blockchain
technology is outgrowing in its potential to be applied in
many fields of life, such as smart health care, autonomous
cars, and supply chains. Other blockchain networks may
employ not only SHA-256 but also other cryptography hash
functions, such as SHA-512 or SHA-3. Therefore, developing
a flexible and programmable accelerator that can compute
several hash functions is a future need. By developing a low-
cost low-power-consumption blockchain accelerator, we help
to enhance the security and decentralized features of the
blockchain network. Therefore, we believe that developing
a blockchain accelerator that can compute multiple cryp-
tography hash functions at low cost and with low power
consumption will be an important research trend in the near
future.

APPENDIX
The Verilog code and the synthesized results of the proto-
type, optimized, and proposed architectures can be found at
https://github.com/archlab-naist/Double-CME-SHA256/

REFERENCES
[1] P. D. DeVries, ‘‘An analysis of cryptocurrency, bitcoin, and the future,’’

Int. J. Bus. Manage. Commerce, vol. 1, no. 2, pp. 1–9, 2016.
[2] S. Nakamoto, Bitcoin: A Peer-to-Peer Electronic Cash System. Manubot,

Nov. 2019.
[3] M. Rahouti, K. Xiong, and N. Ghani, ‘‘Bitcoin concepts, threats,

and machine-learning security solutions,’’ IEEE Access, vol. 6,
pp. 67189–67205, 2018.

[4] H. Vranken, ‘‘Sustainability of bitcoin and blockchains,’’ Current Opinion
Environ. Sustainability, vol. 28, pp. 1–9, Oct. 2017.

[5] J. Taskinsoy, ‘‘Bitcoin and turkey: A good match or a perfect storm,’’ SSRN
Electron. J., Oct. 2019, doi: 10.2139/ssrn.3477849.

[6] N. T. Courtois, M. Grajek, and R. Naik, ‘‘Optimizing SHA256 in bitcoin
mining,’’ in Proc. Int. Conf. Cryptogr. Secur. Syst., Berlin, Germany:
Springer, 2014, pp. 131–144.

[7] X. Zhang and H. Hu, ‘‘Optimization of hash function implementation for
bitcoin mining,’’ in Proc. 3rd Int. Conf. Mechatronics Eng. Inf. Technol.
(ICMEIT), 2019.

[8] M. D. Rote, V. N, and D. Selvakumar, ‘‘High performance SHA-2 core
using the round pipelined technique,’’ in Proc. IEEE Int. Conf. Electron.,
Comput. Commun. Technol. (CONECCT), Jul. 2015, pp. 1–6.

[9] L. Dadda, M. Macchetti, and J. Owen, ‘‘The design of a high speed ASIC
unit for the hash function SHA-256 (384, 512),’’ in Proc. Design, Autom.
Test Eur. Conf. Exhib., Feb. 2004, pp. 70–75.

[10] M. Padhi and R. Chaudhari, ‘‘An optimized pipelined architecture of SHA-
256 hash function,’’ in Proc. 7th Int. Symp. Embedded Comput. Syst.
Design (ISED), Dec. 2017, pp. 1–4.

[11] X. Zhang, R. Wu, M. Wang, and L. Wang, ‘‘A high-performance parallel
computation hardware architecture in ASIC of SHA-256 hash,’’ in Proc.
21st Int. Conf. Adv. Commun. Technol. (ICACT), Feb. 2019, pp. 52–55.

[12] S. B. Suhaili and T. Watanabe, ‘‘Design of high-throughput SHA-256 hash
function based on FPGA,’’ in Proc. 6th Int. Conf. Electr. Eng. Informat.
(ICEEI), Nov. 2017, pp. 1–6.

[13] R. García, I. Algredo-Badillo, M. Morales-Sandoval, C. Feregrino-Uribe,
and R. Cumplido, ‘‘A compact FPGA-based processor for the secure hash
algorithm SHA-256,’’ Comput. Electr. Eng., vol. 40, no. 1, pp. 194–202,
Jan. 2014.

[14] H. Michail, G. Athanasiou, A. Kritikakou, C. Goutis, A. Gregoriades,
and V. Papadopoulou, ‘‘Ultra high speed SHA-256 hashing cryptographic
module for ipsec hardware/software codesign,’’ in Proc. Int. Conf. Secur.
Cryptogr. (SECRYPT), Jul. 2010, pp. 1–5.

[15] L. Bai and S. Li, ‘‘VLSI implementation of high-speed SHA-256,’’ in
Proc. IEEE 8th Int. Conf. ASIC, Oct. 2009, pp. 131–134, doi: 10.1109/ASI-
CON.2009.5351591.

[16] S. Tillich, M. Feldhofer, M. Kirschbaum, P. Thomas, S. Jörn-Marc, and
S. Alexander, ‘‘High-speed hardware implementations of BLAKE, blue
midnight wish, CubeHash, ECHO, Fugue, Grøstl, Hamsi, JH, Keccak,
Luffa, Shabal, SHAvite-3, SIMD, and Skein,’’ IACR Cryptol. ePrint Arch.,
vol. 510, 2009.

[17] F. Opritoiu, S. L. Jurj, and M. Vladutiu, ‘‘Technological solutions for
throughput improvement of a secure hash algorithm-256 engine,’’ in
Proc. IEEE 23rd Int. Symp. Design Technol. Electron. Packag. (SIITME),
Oct. 2017, pp. 159–164.

[18] R. Martino, and A. Cilardo, ‘‘A flexible framework for exploring,
evaluating, and comparing SHA-2 designs,’’ IEEE Access, vol. 7,
pp. 72443–72456, 2019.

[19] R. Martino, and A. Cilardo, ‘‘A configurable implementation of the SHA-
256 hash function,’’ in Proc. Int. Conf. P2P, Parallel, Grid, Cloud Internet
Comput., Cham, Switzerland: Springer, Nov. 2019, pp. 558–567.

[20] F. Kahri, B. Bouallegue, M. Machhout, and R. Tourki, ‘‘An FPGA imple-
mentation and comparison of the SHA-256 and blake-256,’’ in Proc. 14th
Int. Conf. Sci. Techn. Autom. Control Comput. Eng. STA, Dec. 2013,
pp. 152–157, doi: 10.1109/STA.2013.6783122.

[21] R. Florin and R. Ionut, ‘‘FPGA based architecture for securing IoT with
blockchain,’’ in Proc. Int. Conf. Speech Technol. Hum.-Comput. Dialogue
(SpeD), Oct. 2019, pp. 1–8, doi: 10.1109/SPED.2019.8906595.

VOLUME 8, 2020 139645

http://dx.doi.org/10.2139/ssrn.3477849
http://dx.doi.org/10.1109/ASICON.2009.5351591
http://dx.doi.org/10.1109/ASICON.2009.5351591
http://dx.doi.org/10.1109/STA.2013.6783122
http://dx.doi.org/10.1109/SPED.2019.8906595


H. L. Pham et al.: Double SHA-256 Hardware Architecture With CME

[22] D. K. N. and R. Bhakthavatchalu, ‘‘Parameterizable FPGA implementation
of SHA-256 using blockchain concept,’’ in Proc. Int. Conf. Commun.
Signal Process. (ICCSP), Apr. 2019, pp. 0370–0374, doi: 10.1109/ICCSP.
2019.8698069.

[23] J. Barkatullah and T. Hanke, ‘‘Goldstrike 1: CoinTerra’s first-generation
cryptocurrency mining processor for bitcoin,’’ IEEE Micro, vol. 35, no. 2,
pp. 68–76, Mar. 2015, doi: 10.1109/MM.2015.13.

[24] M. Vilim, H. Duwe, and R. Kumar, ‘‘Approximate bitcoin mining,’’ in
Proc. 53rd Annu. Design Autom. Conf. DAC, Jun. 2016, pp. 1–6.

[25] V. B. Suresh, S. K. Satpathy, and S. K. Mathew, ‘‘Energy-efficient bitcoin
mining hardware accelerators,’’ U.S. Patent 10 313 108 B2, Jun. 4, 2019.

[26] V. B. Suresh, S. K. Satpathy, and S. K. Mathew, ‘‘Optimized SHA-256 dat-
apath for energy-efficient high-performance Bitcoin mining,’’ U.S. Patent
1 014 098 B2, Nov. 27, 2018.

[27] V. B. Suresh, S. K. Satpathy, and S. K. Mathew, ‘‘Bitcoin mining hardware
accelerator with optimized message digest and message scheduler datap-
ath,’’ U.S. Patent 2 018 008 642 A1, Mar. 29, 2018.

[28] V. Suresh, S. Satpathy, R. Kumar, M. Anders, H. Kaul, A. Agarwal, S. Hsu,
R. Krishnamurthy, V. De, and S.Mathew, ‘‘A 250Mv, 0.063J/Ghash bitcoin
mining engine in 14nm CMOS featuring dual-vcc Sha256 datapath and
3-Phase latch based clocking,’’ in Proc. Symp. VLSI Circuits, Jun. 2019,
pp. C32–C33.

[29] T. H. Tran, S. Kanagawa, D. P. Nguyen, and Y. Nakashima, ‘‘ASIC design
of MUL-RED Radix-2 pipeline FFT circuit for 802.11ah system,’’ in
Proc. IEEE Symp. Low-Power High-Speed Chips (COOL CHIPS XIX),
Apr. 2016, pp. 1–3.

[30] J. Anish Dev, ‘‘Bitcoin mining acceleration and performance quantifica-
tion,’’ in Proc. IEEE 27th Can. Conf. Electr. Comput. Eng. (CCECE),
May 2014, pp. 1–6, doi: 10.1109/CCECE.2014.6900989.

[31] M. Bedford Taylor, ‘‘The evolution of bitcoin hardware,’’ Computer,
vol. 50, no. 9, pp. 58–66, 2017, doi: 10.1109/MC.2017.3571056.

[32] S. Ghimire and H. Selvaraj, ‘‘A survey on bitcoin cryptocurrency and its
mining,’’ in Proc. 26th Int. Conf. Syst. Eng. (ICSEng), Dec. 2018, pp. 1–6,
doi: 10.1109/ICSENG.2018.8638208.

HOAI LUAN PHAM (Graduate Student Member,
IEEE) received the bachelor’s degree in computer
engineering from the University of Information
Technology-Vietnam National University Ho Chi
Minh City (VNU-HCM), Vietnam, in 2018. He is
currently pursuing the M.S. degree with the Nara
Institute of Science and Technology (NAIST),
Japan. His research interests include blockchain
technology and cryptography.

THI HONG TRAN (Member, IEEE) received
the bachelor’s degree in physics and the mas-
ter’s degree in microelectronics from the Vietnam
National University-Ho Chi Minh University of
Science (VNU-HCMUS), Vietnam, in 2008 and
2012, respectively, and the Ph.D. degree in infor-
mation science from the Kyushu Institute of Tech-
nology, Japan, in 2014. Since 2015, she has been
with the Nara Institute of Science and Technology
(NAIST), Japan, as a Full Time Assistant Profes-

sor. Her research interests include digital hardware circuit design, algorithm
relate to wireless communication, communication security, blockchain tech-
nologies, SHA-2, SHA-3, cryptography, and so on. She is a Regular Member
of the IEEE, IEICE, REV-JEC, and so on.

TRI DUNG PHAN received the Engineer
degree in computer engineering (hardware design)
from Vietnam National University Ho Chi
Minh City-University of Information Technology
(VNUHCM-UIT), in 2019. He is currently pursu-
ing the M.S. degree in Nara Institute of Science
and Technology (NAIST), Japan. His research
interests include secure hash algorithm (SHA)
in Hardware Design, such as FPGA and ASIC
design.

VU TRUNG DUONG LE received the bache-
lor’s degree in IC and hardware design from the
Vietnam National University Ho Chi Minh City-
University of Information Technology, in 2020.
His research interests include blockchain tech-
nologies, deep learning, cryptography, and so on.

DUC KHAI LAM received the B.E. and M.S.
degrees from the University of Science, Vietnam
National University Ho Chi Minh City (VNU-
HCM), in 2006 and 2011, respectively, and the
Ph.D. degree from the Kyushu Institute of Tech-
nology, Japan, in 2016. He is currently with
the University of Information Technology, VNU-
HCM, as a Lecturer and a Researcher. His research
interests include wireless communication systems,
digital signal processing, ASIC, and VLSI design.

YASUHIKO NAKASHIMA (Senior Member,
IEEE) received the B.E., M.E., and Ph.D. degrees
in computer engineering from Kyoto University,
in 1986, 1988, and 1998, respectively. He was a
Computer Architect with the Computer and Sys-
tem Architecture Department, Fujitsu Ltd., from
1988 to 1999. From 1999 to 2005, he was an Asso-
ciate Professor with the Graduate School of Eco-
nomics, Kyoto University. Since 2006, he has been
a Professor with the Graduate School of Informa-

tion Science, Nara Institute of Science and Technology. His research interests
include computer architecture, emulation, circuit design, and accelerators.
He is a Fellow of IEICE, a Senior Member of IPSJ, and a member of the
IEEE CS and ACM.

139646 VOLUME 8, 2020

http://dx.doi.org/10.1109/ICCSP.2019.8698069
http://dx.doi.org/10.1109/ICCSP.2019.8698069
http://dx.doi.org/10.1109/MM.2015.13
http://dx.doi.org/10.1109/CCECE.2014.6900989
http://dx.doi.org/10.1109/MC.2017.3571056
http://dx.doi.org/10.1109/ICSENG.2018.8638208


IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS—I: REGULAR PAPERS, VOL. 68, NO. 10, OCTOBER 2021 4245

BCA: A 530-mW Multicore Blockchain Accelerator
for Power-Constrained Devices in Securing

Decentralized Networks
Thi Hong Tran , Member, IEEE, Hoai Luan Pham , Member, IEEE, Tri Dung Phan ,

and Yasuhiko Nakashima , Senior Member, IEEE

Abstract— Blockchain distributed ledger technology (DLT)
has widespread applications in society 5.0 because it improves
service efficiency and significantly reduces labor costs. How-
ever, employing blockchain DLT entails considerable energy
consumption in the mining process. This paper proposes a
blockchain accelerator (BCA) with ultralow power consumption
and a high processing rate to address the problem. The BCA
focuses on accelerating the double secure hash algorithm (SHA)
256 function required in the mining process at a system-on-
chip (SoC) level. We propose three ideas, namely, multiple local
memories (multimem), double-cell processing element (D-PE),
and nonce autoupdate (NAU), to reduce the external data transfer
time and improve the BCA hardware efficiency. We propose
a cascaded multiple BCA chip model to enhance the system
throughput by several-fold. Our experiments on an ASIC and
FPGA prove that the proposed BCA successfully performs the
mining process for multiple blockchain networks with much
lower power consumption than that of the state-of-the-art CPUs
and GPUs. The BCA is laid out with Renesas 65 nm technology
with a chip area of 25 mm2 and consumes 530 mW at 100 MHz.
The power efficiency of the layout chip is improved by 2428 and
143 times compared with that of the fastest CPU Intel i9-10940X
and GPU RTX 3090, respectively.

Index Terms— Blockchain, Bitcoin mining, double SHA-256,
accelerator, embedded system, SoC, society 5.0.

I. INTRODUCTION

SUPER Smart Society 5.0 is Japan’s concept of a
technology-based, human-centered society that balances

economic development with the resolution of social problems,
such as an aging society, greenhouse gas emissions, and labor
shortages [1]. In society 5.0, developing and securing a shared
cyberspace for storing the data collected from physical space
is vital. The shared cyberspace allows many services and
systems to share the same data resources to cooperate smartly
and automatically. As a result, the system service efficiency

Manuscript received April 13, 2021; revised June 25, 2021, July 18, 2021,
and August 2, 2021; accepted August 2, 2021. Date of publication August 17,
2021; date of current version September 30, 2021. This work was supported
by Japan Science and Technology Agency (JST) through Precursory Research
for Embryonic Science and Technology (PRESTO) under Grant 2020A031.
This article was recommended by Associate Editor M. Mozaffari Kermani.
(Corresponding author: Thi Hong Tran.)

The authors are with the Graduate School of Information Science, Nara
Institute of Science and Technology (NAIST), Ikoma 630-0192, Japan
(e-mail: hong@is.naist.jp).

Color versions of one or more figures in this article are available at
https://doi.org/10.1109/TCSI.2021.3102618.

Digital Object Identifier 10.1109/TCSI.2021.3102618

and labor cost are expected to improve significantly. Recently,
while centralized cyber-physical systems (CPSs) have faced
many types of security threats, decentralized blockchain (BC)
CPSs have become an important research theme for securing
shared cyberspace.

BC has proven successful in securing decentralized cryp-
tocurrency systems such as Bitcoin, Ripple, and Ethereum.
Recently, it has received considerable research attention to
benefit a wide variety of life aspects, such as self-driving
cars, smart healthcare systems, robotics, supply chains, global
trade, insurance, financial markets, logistics, and autonomous
military weapons [2]–[4]. This is why Fukao stated in his book
[5] that BC is a once-in-500-years revolution. In a BC network,
data are recorded on a chain of blocks known as ledgers [6].
Every block added to the ledger is created by hashing a
message header, which may include a hash value of the
previous block, hash of the Merkle root of the data, timestamp,
target value, and nonce. For the sake of network security,
the addition of a new block is a hard-working process known
as mining in which miners may relentlessly find a valid nonce
to make a hashing output smaller than the target value [7].
The double secure hash algorithm (SHA)-256 is the most
popular algorithm to compute the hash of the block header.
The use of double SHA-256 protects the network against the
length extension attack [8]. The Bitcoin network has been
reported to repeatedly compute the double SHA-256 function
approximately 1037 times on average to successfully add
a new block to the ledger. This results in Bitcoin’s well-
known disadvantage of extremely high energy consumption.
Improving the processing rate and hardware efficiency of
SHA-256 and/or double SHA-256 circuits has thus been a
research trend in recent years.

Conventional studies have proposed many techniques
to improve the performance of SHA-256 and/or double
SHA-256. For instance, [9] developed an FPGA-based com-
pact SHA-256 processor using resource sharing. Pipelined
architectures have been developed in many studies, such
as [10], [14], to reduce the critical path delay of the SHA-256
circuit. Unrolled architectures [15]–[18] were implemented to
achieve a high processing rate but a large circuit area and high
power consumption. [19]–[22] further reduced the circuit area
of the double SHA-256 unrolled architecture by eliminating
an 8-round unrolled datapath. Furthermore, [11] introduced

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/

https://orcid.org/0000-0002-2744-0079
https://orcid.org/0000-0002-4272-0132
https://orcid.org/0000-0002-4921-3811
https://orcid.org/0000-0002-9457-5061


4246 IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS—I: REGULAR PAPERS, VOL. 68, NO. 10, OCTOBER 2021

the parallel counter technique to reduce the critical path delay
and circuit area. Recently, [23] proposed an SHA-256 round
computation rescheduling method to reduce the critical path
delay and improve the processing rate of the SHA-256 accel-
erator. Patent [24] used the clock gate technique to selectively
inactivate some part of the double SHA-256. In addition,
the datapath of double SHA-256 in the case of Bitcoin
mining is optimized for high-efficiency energy consumption
and hardware costs. In patent [25], the message digestion
and message scheduler datapaths of double SHA-256 in the
case of Bitcoin mining are optimized for low hardware cost.
Recently, [26] and [27] utilized the input data characteristic of
double SHA-256 in the case of Bitcoin mining to significantly
optimize the circuit area and power consumption. Overall,
these works focused on improving the power and hardware
cost performance of SHA-256 and/or double SHA-256 as a
standalone accelerator. Unfortunately, the double SHA-256
circuit is not able to work alone; it must work under the control
of a microprocessor of an embedded system. Improving the
performance of double SHA-256 as a standalone core, as the
aforementioned conventional works have done, is insufficient
to render the core applicable in real situations. Therefore,
general purpose hardware platforms, such as multicore Intel
central processing units (CPUs) and high-performance GPUs
(Tesla V100), are still of interest for performing the mining
process of several BC networks, such as Bitcoin and Bitcoin
Cash, although the energy consumption of these platforms
is extremely high. The use of these platforms results in
the well-known issue of high electricity consumption. As of
November 2020, Bitcoin energy consumption was estimated
to be approximately 76.87 terawatt hours per year, which is
higher than the electricity consumption of many countries,
such as the Czech Republic and Switzerland. Obviously,
developing an ultralow power consumption, high processing
rate accelerator that is compatible with an embedded system
for application in BC mining has been an urgent matter in
recent years. The system-on-chip (SoC) compatibility of the
accelerator and data transfer rate between the accelerator and
external double data random access memory (DDRAM) must
be carefully considered.

Motivated by Global Sustainable Development Goal (SDG)
No. 7 (clean energy), our aim is to develop a sustain-
able blockchain accelerator (BCA) for power-constrained
edge devices, such as autonomous cars, smartphones, smart
watches, and sensors to enable these devices to contribute
to securing decentralized BC networks (see Fig. 1). With the
BCA, our aim is not only to solve the aforementioned energy
consumption issue but also to enhance the security and decen-
tralization of the networks. The current blockchain consensus,
such as proof of work, obviously allows a large mining pool to
achieve high performance, which results in the centralized-like
nature and degradation of network security. In the future,
we believe that there should be more efficient blockchain
consensuses that degrade the performance of large mining
pools and encourage numerous power-constrained devices to
participate in the mining task to enhance the network security
and decentralized level. We developed the BCA to achieve
this aim. In [28], we developed an SoC-compatible SHA-256

Fig. 1. Future vision of the BCA in helping power-constrained devices secure
blockchain networks.

accelerator with a high computation rate and efficient data
transfer rate. However, the developed accelerator attempts to
compute the SHA-256 hash function for general purposes.
There are still three main problems when applying the accel-
erator in [28] for computing double SHA-256. First, multiple
processing elements (PEs) are required to compute the double
SHA-256 algorithm. Thus, the processing rate is degraded.
Second, the size of local memories is too large, while the
number of trials on hash calculation per configuration time is
limited. Third, the architecture in [28] requires the data transfer
between the accelerator and the external memory for all hash
functions to be calculated by the accelerator, which raises
the data transfer rate bottleneck issue. This issue obviates
the usefulness of further improving the processing rate of the
accelerator.

In this study, we solve the aforementioned problems in [28]
by developing a novel BCA architecture for accelerating the
double SHA-256 in the BC mining process. The name “BCA”
is used owing to its purpose of accelerating the mining process
of blockchain networks, even though its function is to compute
double SHA-256. In terms of innovation, we introduce the
idea of a double-cell processing element (D-PE) to compute
the double SHA-256 algorithm inside a single D-PE. The
D-PEs work in parallel as multiple independent processing
cores (multicore). We modify the multiple local memory
structure in [28] to significantly reduce the memory size.
In addition, we implement the NAU mechanism to eliminate
the data transfer rate bottleneck issue. Our experiments on
Xilinx FPGA Alveo U280 and ASIC Renesas Silicon On Thin
Buried Oxide (SOTB) 65 nm show that the BCA successfully
performs the mining task for as many as 14 BC networks,
including Bitcoin and Bitcoin Cash, with much lower power
consumption than that of the state-of-the-art CPU and GPU
platforms. The layout chip of the BCA consumes 530 mW
on ASIC 65 nm and is expected to consume only 65 mW on
ASIC 8 nm technology.

The remainder of this paper is structured as follows.
Section II presents the background of this research. Section III



TRAN et al.: BCA: 530-mW MULTICORE BCA FOR POWER-CONSTRAINED DEVICES 4247

Fig. 2. Three steps for creating a new block in the ledger in the mining
process of blockchain networks.

describes our proposed BCA architecture. Section IV reports
the BCA verification and evaluation in both ASIC and FPGA
experiments. Finally, section V concludes the paper.

II. BACKGROUND

A. Proof of Work Consensus and Double SHA-256

One of the greatest challenges of a decentralized BC net-
work is to guarantee that all nodes of the network maintain
the same integrity ledger although nodes may be honest or
dishonest. To achieve this purpose, several consensus protocols
have been proposed, such as proof of work (PoW), proof of
stake (PoS), and delegated proof of stake (DPoS). Among
them, PoW is widely belied to be the only consensus that
is truly secure enough for a public network. In a PoW-based
BC network, an extensive hash computing effort is applied to
trade off system security. In essence, miners on the network
perform three steps to add a new block to the ledger, as shown
in Fig. 2. Step 1 selects a set of transaction data that the
miner plans to write into the current block and calculates
the Merkle tree hash value of this set of data. Step 2 forms
the block header, including the version, hash value of the
previous block, Merkle root hash value, timestamp, target, and
nonce fields. Step 3 is the most time- and energy-consuming
process. This step hashes the block header by utilizing an
SHA. Double SHA-256 has been the most popular algorithm
in recent years. In this step, a large number of trials are
conducted by computing the double SHA-256 of the header
with all possible values of the nonce field until a valid hash
smaller than a predefined target is found.

Fig. 3 shows the computation of double SHA-256 for a
block header in many popular BC networks, such as Bitcoin
and Bitcoin Cash. Before being hashed, to the header will
be added padding+length to a length of exactly 1024 bits
(2 blocks of 512-bit data). Two blocks of SHA-256, denoted
SHA-2561 and SHA-2562, are needed to hash the 1024-bit
header. SHA-2561 hashes the first 512 bits, and SHA-2562
hashes the last 512 bits of the header. SHA-2562 requires the

Fig. 3. Double SHA-256 computation for a block header.

result of SHA-2561 as its initial hash value. For the sake of
security, another SHA-256 block (SHA-2563) is required to
hash the hash result of the header (double hash). To obtain
the double hash value of the header, a new 512-bit data block
must be created by concatenating the 256-bit hash result of
SHA-2562 and 256-bit padding+length data. SHA-2563 then
hashes this data block.

Note that once the value of the final double hash is larger
than the target, the double SHA-256 computation is performed
again by changing the value of the 32-bit nonce field. nonce is
the only field of the header that will be changed. This means
that the miner may need to compute SHA2 and SHA3 up to
232 times for each calculation of SHA-2561. Therefore, our
aim is to develop a hardware circuit to accelerate SHA2 and
SHA3 with the assumption that SHA1 has been computed by
the microprocessor of the embedded system.

B. SHA-256 Algorithm

This section briefly describes the key points of the SHA-256
algorithm that are worth reviewing for our proposed architec-
ture. SHA-256 receives 512 bits of input message and 256 bits
of initial hash to compute 256 bits of message hash. The
input message and initial hash are divided into 16 32-bit data
words (W0, . . ., W15) and 8 32-bit data words (Hi0, . . ., Hi7).
The message expander (ME) and message compressor (MC)
processes are then applied to compute 8 32-bit words of
message hash (H o0, . . ., H o7).

The ME process follows eqs. (1) to (3) to compute W j

(16 ≤ j ≤ 63).

σ0(x) = S7(x) ⊕ S18(x) ⊕ R3(x) (1)

σ1(x) = S17(x) ⊕ S19(x) ⊕ R10(x) (2)

W j = σ1(W j−2) + W j−7 + σ0(W j−15) + W j−16 (3)

Note that Sn(.) and Rn(.) represent right rotation and right
shift of a word by n bits, respectively.

The MC process includes two main steps: loops and
hash updates. In the loop step, eight loop hash words
a, b, c, d, e, f, g, h are first assigned to the initial hash
words (Hi0, . . ., Hi7). Then, these loop hash words
a, b, c, d, e, f, g, h are computed and updated in 64 loops.



4248 IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS—I: REGULAR PAPERS, VOL. 68, NO. 10, OCTOBER 2021

Loop j (0 ≤ j ≤ 63) computes equations (4) to (8).

T1 = h + �1(e) + Ch(e, f, g) + K j + W j (4)

T2 = �0(a) + Maj (a, b, c) (5)

a = T1 + T2 (6)

e = d + T1 (7)

b = a; c = b; d = c; f = e; g = f ; h = g (8)

where logical functions such as �0(x), �1(x), Ch(x, y, z),
and Maj (x, y, z) are calculated by the following equations.

�0(x) = S2(x) ⊕ S13(x) ⊕ S22(x) (9)

�1(x) = S6(x) ⊕ S11(x) ⊕ S25(x) (10)

Ch(x, y, z) = (x ∧ y) ⊕ (¬x ∧ z) (11)

Maj (x, y, z) = (x ∧ y) ⊕ (x ∧ z) ⊕ (y ∧ z) (12)

In the hash update step, the message hash words H o0, . . .,
H o7 are found by obtaining the sum of the initial hashes Hi0,
. . ., H7 and the loop hashes a, b, c, d, e, f, g, h, as illustrated
in eq. (13).

H o0 = Hi0 + a; . . . ; H o7 = Hi7 + h (13)

C. Preliminary BCA Architecture Idea

According to eq. (3), there are data dependencies among
loops of the hash function. For example, the computation of
W j in the ME process in loop j (16 ≤ j ≤ 63) requires
data from the previous loops, such as W j−2 in loop j − 2,
W j−7 in loop j − 7, W j−15 in loop j − 15, and W j−16 in
loop j − 16. This data dependence increases the need for
data transfer between the calculation unit and memory in
every loop, which is the main reason for the low efficiency
of the general hardware platforms (e.g., Intel multicore CPUs,
GPU GTX 3090) in computing SHA-256. In the CPU and
GPU platforms, memory resources such as caches L1 and
L2 are placed far from the calculation unit, which results in
a long data transfer time. Therefore, the processing rate is
significantly degraded even though the CPUs and GPUs are
rich in hardware resources.

In this study, we develop an ultralow power, high processing
rate BCA by eliminating the weakness of the CPU and
GPU platforms from our architecture. In detail, we employ
the following ideas. Idea 1: Multiple local memories. We
propose the use of multiple local memories near the calculation
unit inside a PE to reduce the data transfer time and improve
the hardware efficiency. Idea 2: D-PE architecture. If a
PE can compute only some but not all loops of the hash
function, then the calculation unit inside a PE may need to
access data from the local memory of other PEs. This results
in the requirement of complicated mesh wire connections
among PEs. The circuit area and power consumption for
the data bus and data access among PEs may constitute
a large portion of the total chip. To avoid this situation,
we propose a D-PE architecture that computes all loops of
SHA-2562 and SHA-2563 of the double SHA-256 inside a
single D-PE, which allows all D-PEs to operate in parallel
and independently without requiring any wire connection

Fig. 4. Overview of the embedded system-on-chip (SoC).

among D-PEs. Idea 3: NAU and valid hash checker (VHC)
mechanisms. The computing of 1 hash function requires
transferring at least 1024 bits of data (which includes 512-bit
input messages, 256-bit initial hashes, and 256-bit hash results)
via an advanced extensible interface (AXI) bus. This amount
is multiplied if a large number of hash functions should
be computed per configuration time. The data transfer rate
thus becomes a bottleneck that degrades the processing rate
of the entire system. An improvement in the accelerator
processing rate may become meaningless if the embedded
system is not able to bear such a high data transfer rate. In this
study, we eliminate the data transfer rate bottleneck issue by
employing the NAU mechanism to automatically update the
nonce value and the VHC mechanism to check and discard the
invalid hash values. Only the valid hash value will be informed
and read out of the BCA. In addition, we minimize the size
of local memories to ensure enough space for computing only
one hash function. These memories should be reused for the
BCA to uninterruptedly compute an unlimited number of hash
functions until a valid hash value is found. Idea 4: Cascaded
multiple chip model. After eliminating the data transfer rate
bottleneck issue, we further enhance the BCA processing rate
multiple times by developing a cascaded multiple BCA chip
model. The model allows multiple BCA chips to cascade
to the same AXI bus. The total processing rate and power
consumption of the cascaded mode can be traded off to meet
the actual requirements.

III. PROPOSED BLOCKCHAIN ACCELERATOR (BCA)

A. Overview of the Architecture

Fig. 4 presents an overview of an embedded SoC imple-
menting our proposed BCA for performing mining tasks. The
BCA connects with other parts of the system via an AXI
bus. The CPU is the microprocessor that controls the entire
SoC. During the mining process, the CPU sends commands
to obtain transaction data from the BC network through
a network interface controller (NIC) and writes these data
into double data random access (DDR) memory. Some light
processing, such as computing the Merkle tree hash of the



TRAN et al.: BCA: 530-mW MULTICORE BCA FOR POWER-CONSTRAINED DEVICES 4249

Fig. 5. Overview of the proposed BCA architecture.

transaction data and calculating SHA-2561, should be per-
formed in advance by the CPU. The CPU then sends the heavy
task of extensively calculating SHA-2562 and SHA-2563 to the
BCA to achieve faster processing. Data required for SHA-2562
and SHA-2563 computation will be transferred from DDR
memory to the BCA. As soon as the BCA finds the valid
hash value matching the target, it returns the valid hash to
DDR memory, switches to idle status, and waits for new
commands from the CPU. Data are transferred between the
DDR memory and BCA through an advanced microcontroller
bus architecture (AMBA) bus and AXI bus. Finally, the CPU
forms a new block based on the valid hash found by the BCA
and broadcasts the new block to the BC network.

Fig. 5 presents an overview of the proposed BCA archi-
tecture. The main component of the BCA is an array of
D-PEs responsible for accelerating the final two processes
of double SHA-256 (SHA-2562 and SHA-2563). In addition,
it includes an address translator, a global memory (GRAM),
and a controller (CTRL). The GRAM includes two sets of
memory named HRAM1 and HRAM2 that store the global
parameters used by all D-PEs of the BCA. The address
translator translates the data address of the AXI bus into
the appropriate address of local memories inside the GRAM
and D-PEs. The CTRL provides the control signals to govern
the computation and data flows inside the D-PEs to ensure
that the D-PEs operate correctly as scheduled. The D-PEs
are computation units that work independently and in parallel.
A D-PE is configured to compute SHA-2562 and SHA-2563
for a specific range of nonce values, which we call nonce_step
A. Let us say that we have a BCA with 64 D-PEs. The BCA
should scan all possible hash values equivalent to 232 values of
nonce to find a valid hash value smaller than the target value.
Then, the BCA is programmed to have nonce_step A = 226,
in which “D-PE 0”, “D-PE i”, and “D-PE 63” compute for
nonce ranging from 0 to A, (i × A) to ((i + 1) × A − 1), and
(63 × A) to (64 × A − 1), respectively.

Let us say that the CPU needs to find the valid hash
for a block header. It first computes SHA-2561 for the
first 512 bits of header to obtain the intermediate hash
value denoted Hi0(1), . . . , Hi7(1). It then asks the BCA
to search for a valid hash of a block header by scanning

Fig. 6. Cascaded multiple BCA chip model.

all possible values of nonce. It must transfer the follow-
ing data from DDR memory to the BCA: 1) nonce_start
and nonce_step, where nonce_start is the starting value of
nonce that BCA should use and nonce_step is the number
of nonce values that should be searched by each D-PE
of the BCA; 2) the input messages (W0(1), . . . , W15(1))
and initial hash values (Hi0(1), . . . , Hi7(1)) for computing
SHA-2562 (note that W2(1) is also the target that BCA should
use to specify the valid hash); and 3) the input message
(W8(2), . . . , W15(2)) and initial hash (Hi0(2), . . . , Hi7(2))
for computing SHA-2563. Once the BCA successfully finds
the valid hash, the valid hash (H o0(r), . . . , H o7(r)) and the
equivalent valid_nonce value will be read out of the BCA.

In our design, each D-PE is able to find a hash value
every clock cycle on average. The processing rate of the
BCA depends on the number of implemented D-PEs. Some
BC systems may require faster processing rates, while others
may prioritize lower power consumption and hardware costs.
To satisfy the requirements of a wide variety of systems,
we develop a scalable cascaded multichip model, as shown
in Fig. 6. In this model, only a small number of D-PEs
(i.e., 64 D-PEs) are implemented in a BCA chip to achieve
low hardware cost and low power consumption. If a system
requires a faster processing speed, it can cascade multiple
BCA chips into the same AXI bus. Different BCA chips may
scan nonce values of different timestamps. If a BCA chip
successfully finds a valid hash, it reports the result to the CPU,
and the CPU sends commands to interrupt the current task of
the other BCA chips. If the CPU receives a valid hash value
from another node, it interrupts the current task of all BCA
chips and assigns new tasks to all BCA chips.

Fig. 7 shows the memory map of the cascaded BCA chips
from the perspective of the CPU. Because each BCA has
been equipped with multiple local memory blocks, the amount
of transferred data between the BCA and external DDRAM
memory is significantly reduced to only 50 address words.
Therefore, we reserve a slot of 64 address words for each
BCA. To avoid any contention on the AXI bus, the BCA
chips are assigned different address spaces. A cascade of
M chips of the BCA needs 64 × M address words of the
CPU. The CPU specifies address words from 64 × (i −
1) to (64 × i) − 1 to read/write data to/from BCA #i .
Before activating a BCA, the CPU uses the AXI bus to
transfer 41 input words to the BCA (nonce_start, nonce_step,
W0(1) . . . W15(1), Hi0(1) . . . Hi7(1), W8(2) . . . W15(2),
and Hi0(2) . . . Hi7(2)). The address translator of the BCA
then translates the address of the AXI bus into an appropriate



4250 IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS—I: REGULAR PAPERS, VOL. 68, NO. 10, OCTOBER 2021

Fig. 7. Memory map of the proposed cascaded BCA chips from the
perspective of the CPU.

Fig. 8. Operating timing chart of the proposed cascaded BCA chips.

address of the local memories of all D-PEs. Fig. 8 illustrates
the timing chart of cascaded BCA chips, in which valid hash
and nonce values are found by D-PE2 of BCA #2. Fig. 8
shows that data from the CPU are written in parallel into
local memories inside all D-PEs of the same BCA chip. Then,
the D-PEs are executed in parallel. Data written into different
BCA chips are utilized in different time slots by sharing the
same AXI bus. If a D-PE successfully finds valid hash and
nonce values, then the other D-PEs of the same BCA will
stop working. The D-PEs of other BCAs will continue their
execution until receiving commands from the CPU.

Regarding the scalability of the proposed architecture,
the cascading of M chips of the BCA can enhance the process-
ing speed by M times, in which the maximum value of M
depends on the available hardware resources of the system and
the available range of addresses that can be controlled by the
CPU. If there is no problem with the hardware resources, then
a 32-bit CPU can theoretically control up to 232/(64×4) = 224

chips of the BCA. Different BCAs may find valid hashes for
different timestamps or different block headers simultaneously.

B. Double-Cell Processing Element (D-PE)
Fig. 9 depicts the architecture inside each D-PE of the BCA.

It includes two cells for computing SHA-2562 and SHA-2563
of the double SHA-256. The architectures of cells 1 and 2 are
similar, and a cell includes two main components: a pipelined
arithmetic logic unit (ALU) and a set of local memories
named WRAM. Cell 1 contains ALU1 and WRAM1, and
cell 2 contains ALU2 and WRAM2. The ALU is responsible
for computing all loops of hash functions. To achieve a high
maximum frequency, the ALU is designed to compute a
hash loop in 4 pipelined clock cycles. WRAM stores input
messages W0, . . ., and W63, which are required for the ALU
computation. To maximize the utilization of ALU hardware
resources, 4 two-port RAM blocks (WM1, WM2, WM3,
and WM4) are implemented in the WRAM. These RAM
blocks are scheduled to generate 4 pipelined data flows of 4
independent hash functions. Input shift buffer (SBi) and output
shift buffer (SBo) blocks are implemented to rearrange the
data flows between the WRAM and ALU. Essentially, the SBi
includes 4 sets of shift registers and a 4-to-1 multiplexer to
adjust the timing of 4 data flows from the WRAM to ALU. The
SBo includes 4 sets of shift registers and a 1-to-4 demultiplexer
to deliver the outputs of the ALU to the corresponding RAM
block inside the WRAM.

In addition, cell 1 implements an NAU mechanism that
automatically updates the nonce value for the next trial if
a valid hash has not yet been found. According to our
investigation, most cryptocurrency networks, including Bitcoin
and Bitcoin Cash, have a nonce field at the position of input
message W3 of SHA-2562. Therefore, the value W3 in all local
memories of WRAM1 will be adjusted in increments of 1
immediately after its old value is no longer required for the
hash calculation of the current function. We apply increments
of 1 for two reasons. First, this results in a small circuit.
Second, double SHA-256 is a pseudorandom function in which
the relationship between the nonce value and the probability
of finding a valid hash is unknown. A random number of
nonce fields can still be selected for each trial; however, this
method is inefficient because the hash calculation for the same
nonce field may be meaninglessly repeated more than once,
and the hardware circuit for generating random nonce values
is complex. In our design, the nonce value (W3) is updated
after the 19th loop of the current hash calculation is completed
(Fig. 10). Cell 2 has a VHC to check whether the hash result is
smaller than the target. When a valid hash is found, a chip_stop
signal is activated to inform all D-PEs of the BCA about the
finding and tstop the processing of all D-PEs. The valid hash
and its equivalent nonce value will then be read out by the
CPU.

A D-PE computes 4 independent hash functions in parallel
and pipelined manners in 64 × 4 = 256 clock cycles on aver-
age (64 clock cycles per hash function). Thus, the processing
rate of a BCA chip with 64 D-PEs is 1 hash/cycle.

1) Pipelined ALU: Fig. 11 depicts the circuit inside the
pipelined ALU. For the sake of low critical path delay, the ME
process is computed in two pipelined stages (ME 1 and
ME 2), and the MC process is computed in 4 pipelined stages
(MC 1, MC 2, MC 3, and MC 4). To reduce latency, we design



TRAN et al.: BCA: 530-mW MULTICORE BCA FOR POWER-CONSTRAINED DEVICES 4251

Fig. 9. Inside architecture of a double-cell processing element (D-PE).

Fig. 10. Illustration of nonce autoupdate (NAU).

ME 1 to work in parallel with MC 1, and ME 2 works in
parallel with MC 2. The result of ME 2 (W j ) is passed to MC
3 for further calculation and is written into the WRAM for
future usage. The ALU has a recursive computation mode so
that all loops of the hash function can be computed inside a
single ALU. According to this mode, the loop hash results
(a, . . . , h) of MC 4 are fed back to MC 1 for the next
loop computation until all the loops are completed. Once all
64 loops are completed, the final hash values (H o0, . . . , H o7)
are computed in the 5th stage by adding the results of
MC 4 (a, . . . , h) and the initial hash values (Hi0, . . . , Hi7).
The ALU can compute hash values for 4 independent hash

functions by receiving 4 data flows from the local memories
WM1, WM2, WM3, and WM4 of the WRAM. While data
flow 1 is executed at stage MC 4, data flows 2, 3, and 4 are
executed at stages MC 3, MC 2, and MC 1, respectively. This
means that the ALU achieves 100% hardware efficiency.

2) Multiple Local Memory Structure: Multiple local mem-
ory structures are implemented inside the global memory
GRAM and the D-PE WRAM to speed up the hash calculation
and enhance the ALU hardware efficiency.

a) GRAM: The GRAM includes two sets of local mem-
ory, HRAM1 and HRAM2 (Fig. 5). HRAM1 stores initial hash
values Hi0(1), . . ., Hi7(1) that are required for the calculation
inside ALU1 of cell 1 of all D-PEs. These hashes are actually
the results of SHA-2561 computed by the CPU in advance.
HRAM2 stores initial hash values Hi0(2), . . ., Hi7(2) that
are required for the calculation inside ALU2 of cell 2 of
all D-PEs. These hashes are constant parameters defined by
the SHA-256 algorithm. We implement 4 identical single-port
RAM blocks inside each HRAM1 and HRAM2 to provide
4 pipelined data flows to the ALUs. Each single-port RAM
size is 8 × 32 bits.

b) WRAM1 of cell 1: WRAM1 includes four identical
two-port RAM blocks with sizes of 64 × 32 bits to store
the input messages W0(1), . . . , W63(1) required for calculat-
ing SHA-2562 of four independent hash functions (Fig. 9).
The first 16 words W0(1), . . . , W15(1) are read from the
external DDR memory in advance, and the last 48 words
W16(1), . . . , W63(1) are calculated by ALU1. Because the
D-PE of the BCA is designed to compute an unlimited number
of hash functions until a valid hash is found, W3(1) (equivalent
to the nonce value) and W16(1), . . . , W63(1) are updated
every hash function. In this manner, the memory resources
necessary for only 1 hash function can be reused to store



4252 IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS—I: REGULAR PAPERS, VOL. 68, NO. 10, OCTOBER 2021

Fig. 11. Inside circuit of the pipelined ALU.

the data required for computing an unlimited number of hash
functions. The hash results computed by cell 1 (SHA-2562
results) become part of the input message W0(2), . . . , W7(2)
for computing SHA-2563 in cell 2. These results will be
written into the equivalent RAM block of WRAM2 of cell 2.

c) WRAM2 of cell 2: WRAM2 includes four identical
two-port RAM blocks with sizes of 64 × 32 bits to store
the input messages W0(2), . . . , W63(2) required for calculat-
ing SHA-2563 of four independent hash functions (Fig. 9).
Before the BCA is activated, part of the input message of
SHA-2563 (W8(2), . . . , W15(2)) read from the external DDR
memory is stored in addresses 8 to 15 of each RAM block
of WRAM2. During the hash calculation, the hash results
computed by cell 1, which become part of the input message
of SHA-2563 (W0(2), . . . , W7(2)), will eventually be updated
and stored in addresses 0 to 7 of the equivalent RAM block
of WRAM2. The last 48 words of the WRAM2 blocks store
(W16(2), . . . , W63(2)), which are calculated by ALU2.

IV. EXPERIMENTAL RESULTS

A. BCA Verification on Real Hardware

To prove that the BCA works correctly on a real hardware
device, we developed and ran a BCA SoC platform on a Xilinx
FPGA Alveo U280, as shown in Fig. 12. The platform consists
of two main devices: a host PC and an Alveo U280 data
center accelerator card. The two devices exchange data via
JTAG and UART cables. The host PC runs a “Data Generator”
C program and two Xilinx tools (a Vivado and a Vitis).
The “Data Generator” obtains information from BC networks,

Fig. 12. Overview of the BCA verification platform on Alveo U280 FPGA.

forms the block header, and calculates SHA-2561 of the double
SHA-256. The Vitis tool runs a C program that configures the
BCA and transfers input data into the BCA. The Vivado tools
load the synthesized BCA circuit into an Alveo U280 FPGA
card. The Alveo U280 FPGA embeds the following cores: a
MicroBlaze Processor (MP), our BCA 64 D-PEs version, and



TRAN et al.: BCA: 530-mW MULTICORE BCA FOR POWER-CONSTRAINED DEVICES 4253

TABLE I

IMPACT OF THE PROPOSED TECHNIQUES INSIDE THE BCA ON REDUCING
THE LOCAL MEMORY SIZE AND AMOUNT OF TRANSFERRED DATA

a ChipScope Integrated Logic Analyzer (ChipScope ILA). The
MP transfers data from the host PC to the BCA and reads the
valid hash and the equivalent nonce value from the BCA to
the host PC. The ChipScope ILA is a set of tools offered by
Xilinx supporting the verification of the BCA circuit. All three
cores run at 100 MHz. During our experiment, we used Xilinx
Vivado version 2019.2.

We experimented with two test cases: D-PE verification and
mining tasks. In the D-PE verification, the D-PEs of BCA are
programmed to calculate a predefined range of nonce fields
of the same block header. All hash values computed by the
D-PEs (including nonvalid hash values) are captured by the
ChipScope ILA. The ChipScope ILA then compares the D-PE
outputs with the hash values computed by an Intel Xeon Gold
6144 CPU. Our experiment proves that all D-PEs of the BCA
work 100% correctly. In the mining task, we programmed
the BCA to perform the mining task for the following BC
networks: Bitcoin, Bitcoin Cash, Bitcoin Atom, BitcoinV, Bit-
coinSV, FreiCoin, Zetacoin, DeVault, Deutsche eMark, Embar-
goCoin, Susucoin, FreeCash, FreeCash, and Kryptofranc. The
experiment demonstrates that our BCA always generates the
same valid hash and nonce values as those available in these
BC networks. In other words, the BCA performs the mining
task correctly.

B. Evaluating the Impact of the Proposed Techniques Inside
the BCA

This work is the improved version of our previous work
published in [28]. To clarify the impact of the proposed
techniques, such as multimem local memory, D-PE, and NAU,
on the BCA performance, we focus on comparing the perfor-
mance of the proposed BCA and the accelerator in [28] in
this section. The comparison is shown in Table I. Notably,
the accelerator in [28] has been designed to compute the
SHA-256 function; therefore, hardware resources to compute
SHA-2561, SHA-2562, and SHA-2563 of double SHA-256
are supposed to be increased three-fold to ensure that the
calculation rate is not degraded. The normalized total num-
bers of memory blocks HM and WM in [28] are obtained
by considering the difference between SHA-256 and double
SHA-256. We evaluate the performance in terms of the number
of hash functions that can be computed per configuration time,
the size of local memories, and the amount of data transfer
between the accelerator and external DDRAM.

1) Multimem Architecture: The multimem idea was origi-
nally proposed in our previous work [28] to increase the calcu-
lation rate of the accelerator. However, the addition of multiple
local memory blocks resulted in an increase in hardware cost
and power consumption. Selecting the size of local memory
blocks involved a trade-off between the system processing rate
and hardware cost. In this work, we utilized the characteristics
of double SHA-256 for blockchain mining to modify the
multimem architecture so that the size of the local memory
block is minimized and no longer requires a trade-off between
the system processing rate and hardware cost. Numerically,
each block of the WRAM inside a PE of the accelerator in [28]
must have a size of at least L × 64 × 32 = 2048 × L bits
so that a PE can compute up to 4 × L hash functions per
configuration time. To compute the double SHA-256 function,
the normalized number of blocks of WRAM per PE should
be 4 × 3 = 12 blocks. Thus, an accelerator with 64 PEs
requires a WRAM size of 64 × 12 × 2048 × L bits. Each
block of the HRAM inside a PE of the accelerator in [28]
must have a size of at least L × 8 × 32 = 256 × L bits.
To compute the double SHA-256 function, the normalized
number of blocks of HRAM per PE should be 4 × 3 = 12
blocks. Thus, the accelerator with 64 PEs requires an HRAM
size of 64 × 12 × 256 × L bits. In contrast, the proposed
BCA with 64 D-PEs requires only 64 × 8 × 64 × 32 bits (or
128 KB) for the total size of the WRAM and 4 × 8 × 32
bits (or 128 bytes) for the total size of the HRAM. This
means that the total sizes of the WRAM and HRAM are
reduced by 1.5 × L and 192 × L times, respectively. Basically,
L should be at least 1000 so that the accelerator in [28] can
achieve an acceptable processing rate. In this case, the total
sizes of the WRAM and HRAM can be reduced by 1500 and
192000 times, respectively.

2) D-PE Architecture: The PE architecture in [28] was
developed to compute a single SHA-256 algorithm for mul-
tiple purposes. If it is used to compute double SHA-256 in
blockchain mining, the intermediate values (such as the
results of SHA-2561 and SHA-2562) must be read out of
the accelerator and then written into the accelerator again
to compute the final output (the result of SHA-2563). As a
result, the total processing time of the accelerator at the SoC
level is remarkably increased because the data transfer time
occupies a large time fraction, i.e., 3 × 128 = 384 bytes
per double SHA-256 calculation. In this work, the D-PE
architecture was proposed to compute all SHA-256 processes
of double SHA-256 in pipelined pipes without transferring the
intermediate values of a single SHA-256. The data transfer
time is thus eliminated, and the double SHA-256 calculation
rate is improved by 3×. The cost to achieve this performance
is that the circuit area of computation units inside each D-PE
of the BCA is approximately 2× greater than that inside each
PE in [28].

3) NAU and VHC: The baseline design in [28] computes
single SHA-256 functions independently. The computation of
232 values of double SHA-256 corresponding to 232 values of
nonce requires transferring an amount of 384 × 232 bytes of
data. The data transfer time occupies a large time portion of
the total processing time, which may limit the total processing



4254 IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS—I: REGULAR PAPERS, VOL. 68, NO. 10, OCTOBER 2021

TABLE II

EXPERIMENTAL RESULTS OF THE BCA AND THE STATE-OF-THE-ART CPU AND GPU PLATFORMS

time because the bottleneck issue on the maximum data trans-
fer rate can be provided by the embedded board. In this work,
we proposed a combination of the NAU and VHC that allows
a BCA chip to continuously compute an unlimited number
of double SHA-256 values until finding a valid hash. The
computation requires transferring only 50 words (200 bytes)
of data (see Fig. 7), which helps to significantly improve the
total processing time.

We ran the baseline design in [28] on Xilinx FPGA
ZCU-102 and the proposed BCA on Xilinx Alveo U280 to
compute 232 values of double SHA-256. We were not able to
run both accelerators on the same hardware platform for a fair
evaluation for the following reasons. First, we implemented
the baseline design [28] on ZCU-102 because this board
has an ARM processor that we can use to frequently send
commands related to data transfer, while Alveo U280 does
not have a processor to do so. Second, we implemented the
BCA on Alveo U280 because this board has enough FPGA
resources to embed the entire BCA chip, while ZCU-102 does
not have enough FPGA resources to do so. On Alveo U280,
we developed a simple microprocessor to perform the data
transfer in and out of the BCA. The performance of this
microprocessor is too low but is still acceptable because
the amount of transfer data is only 50 words (200 bytes).
In contrast, this microprocessor is not suitable for the task
of transferring the large amount of data required by the
baseline design in [28]. The experimental results showed
that the total processing times of the baseline and the BCA
are 6569 seconds and 11.95 seconds, respectively. While the
computation time of the baseline design is longer than that of
the BCA by only 3 times, the total processing time is increased
by 6569/11.95 = 550 times because of the bottleneck issue
on the data transfer rate provided by the ZCU-102 FPGA
board. Research efforts to improve the data transfer rate of
the ZCU-102 FPGA board may help to reduce the total
processing time. On the other hand, the implementation of
D-PE architecture has resulted in the increment of circuit
power consumption. Our experimental results showed that the
power consumption of the baseline design and the BCA are
3.215 W and 8.38 W, respectively. Despite of this increment
of power consumption, the energy efficiency of the BCA is

significantly improved. Numerically, the energy consumption
for computing 232 values of double SHA-256 of the baseline
design and the BCA are 3.125 × 6569 = 20, 528 J and
8.38 × 11.95 = 100J , respectively. We can see that the
proposed techniques, that is, multimem, D-PE, NAU and VHC,
have been integrated in the same architecture of the BCA
to significantly improve the processing rate (550 times) and
energy efficiency (20, 528/100 = 205 times) compared to
those of the baseline design in [28] in the case of performing
the blockchain mining task.

C. Performance Evaluation: BCA vs. State-of-the-Art CPUs
and GPUs

This section describes our experimental results obtained
from evaluating the performance of the BCA and state-of-
the-art CPU and GPU platforms when computing double
SHA-256 in Bitcoin mining.

Our evaluation results are shown in Table II. We focused on
evaluating the processing rate throughput R, power efficiency,
and area efficiency. During our experiment, we focused on
three main tasks that evaluate the performance of the BCA
on FPGA, the performance of the BCA on ASIC, and the
performance of the state-of-the-art CPU and GPU platforms.
For comparison, all hardware platforms perform the same task
of computing double SHA-256 232 times, corresponding to 232

different values of the nonce field.
1) BCA on FPGA Experiment: We embedded the proposed

BCA 64 D-PEs version in a Xilinx Alveo U280 FPGA card
and programmed the BCA to compute double SHA-256 232

times. The embedded system is the same as that depicted
in Fig. 12 but without the ChipScope ILA, which was used for
debugging and verification purposes. Our experiment shows
that the BCA core occupies 18% of the LUT resources and
20% of the memory resources of the Alveo U280 card, con-
sumes 8.38 W of dynamic power when operating at 400 MHz
and takes 11.95 seconds to compute double SHA-256 232

times.
2) BCA on ASIC Experiment: During our experiment,

we used “Design Compiler version N-2017.09-SP1” and
“IC Compiler version Q-2019.12-SP4” for ASIC synthesis



TRAN et al.: BCA: 530-mW MULTICORE BCA FOR POWER-CONSTRAINED DEVICES 4255

TABLE III

OPTIMAL NUMBER OF THREADS, CORES, AND BLOCKS OF THE
CPUs AND GPUs FROM OUR EXPERIMENT

and layout. We successfully laid out the BCA 64 D-PE
version in ASIC using library Ptt_V0p75_T25 of Renesas
SOTB 65 nm technology. We used the compile_ultra com-
mand with the clock gating option. The exact optimiza-
tion command was compile_ultra −incremental −gate_clock
−timing_high_effort_script. Because of licensing issues,
we were unable to use dedicated two-port RAM blocks pro-
vided by our technology. All RAM blocks of the BCA were
thus synthesized and laid out from flip-flops, which consume
more power and area than dedicated RAM blocks. The layout
chip with a size of 25 mm2 consumes 530 mW of power
when running at a 100 Mhz frequency and 0.75 V applied
voltage. It is worth noting that the BCA embedded on FPGA
Alveo U280 can operate at a higher frequency than the layout
chip of the BCA on ASIC 65 nm because of the difference
in technologies. The FPGA Alveo U280 was fabricated using
Xilinx 16 nm UltraScale+ modern technology, while the ASIC
layout chip of the BCA was fabricated from Renesas 65 nm
old technology. The frequency of 400 MHz on the FPGA
was the maximum operating frequency reported by the Vivado
synthesis tool, while 100 MHz on the ASIC was obtained
from our constraint setting with consideration of the trade-off
between operating frequency and power consumption versus
hardware cost and layout time.

3) State-of-the-Art CPU and GPU Experiment: We devel-
oped C and CUDA codes to run the task (double
SHA-256 calculation 232 times) on an Intel multicore CPU
(Intel i9-10940X) and Nvidia GPUs (GTX 1080 Ti, RTX
3070, RTX 3090, and Tesla V100-PCIE). These platforms
were selected because they are currently the fastest and most
popular accelerators for performing Bitcoin mining. To ensure
a fair comparison, we ran several trials while changing the
number of parallel threads to ensure that the CPU and GPUs
achieved their maximum processing speed. Table III shows
the optimal number of threads, cores, and blocks of the CPU
and GPUs that result in the fastest processing speed that we
obtained in the experiment. We ran double SHA-256 on the
CPU and GPUs using these optimal values for comparison
with our proposed BCA. We recorded the execution time T
and the measured power consumption P during execution of
the CPU and GPUs. In addition, we obtained information such
as the fabrication technology, thermal design power (TDP),
and chip size of these platforms from their data sheets provided
by the manufacturers (Intel for the CPU and NVidia for the
GPUs).

4) Data Processing: From the experimental execution
time T and the measured power consumption P , we computed
the processing rate throughput R in terms of mega hash
per second (Mhps), power efficiency in terms of Mhps per
unit power W (Mhps/W), and area efficiency in terms of Mhps
per unit area mm2 (Mhps/mm2) following eqs. (14), (15),
and (16), respectively. Furthermore, we roughly calculated the
power efficiency and area efficiency normalized to the same
technology ASIC 8 nm using the scaling rules in eq. (17) and
eq. (18), respectively. These scaling rules have been applied
in several publications, such as [29] and [30].

R = 232

106 × P
(14)

Power_e f f = R/P (15)

Area_e f f = R/A (16)

Normali zed_power_e f f = 1

s
× Power_e f f (17)

Normali zed_area_e f f = 1

s2 × Area_e f f (18)

where P and A are the measured power consumption and
area of the hardware platform, respectively. s is the scaling
factor of the transistors of the two different technologies. The
normalization of our 65 nm technology to 8 nm technology
involves a factor of s = 65/8 = 8.125.

5) Performance Evaluation: Table I summarizes our exper-
imental results. We discuss the following evaluation results.

a) Performance of the BCA on Alveo U280: The process-
ing speed of the BCA is 32.7 times (360 vs. 11 Mhps) faster
than that of the Intel i9-10940X CPU. The processing speed
of the BCA is 1.95 times (360 vs. 185), 1.74 times (360 vs.
207), and 1.1 times (360 vs. 329) faster than those of GTX
1080Ti, RTX 3070, and Tesla V100 GPUs, respectively, even
though the BCA is embedded on FPGA 28 nm, while GTX
1080Ti, RTX 2070, and RTX 3090 are fabricated on ASIC
16 nm, ASIC 8 nm, and ASIC 12 nm, respectively. The power
efficiency of the proposed BCA on Alveo U280 is improved
by 642 times (43 vs. 0.067 Mhps/W), 44 times (43 vs. 0.98),
41 times (43 vs. 1.05), 36 times (43 vs. 1.19) and 21 times
(43 vs. 2.02) compared with those of the Intel i9-10940X
CPU, GTX 1080 Ti GPU, RTX 3070 GPU, RTX 3090 GPU,
and Tesla V100 GPU, respectively. This means that using the
proposed BCA on Alveo U280 instead of using the above
CPU and GPUs to perform the mining task could help reduce
electricity consumption by the same amount (642, 44, 41, 36,
and 21 times).

b) Performance of the BCA layout chip: The power
efficiency of the layout chip of the BCA on ASIC 65 nm tech-
nology is improved by 2428 times (170 vs. 0.067 Mhps/W),
173 times (170 vs. 0.98), 162 times (170 vs. 1.05), 143 times
(170 vs. 1.19), and 84 times (170 vs. 2.02) compared with
those of the Intel i9-10940X CPU, GTX 1080 Ti GPU,
RTX 3070 GPU, RTX 3090 GPU, and Tesla V100 GPU,
respectively. The area efficiency of the BCA layout chip is
improved 9.2 times (3.6 vs. 0.393 Mhps/mm2), 6.8 times (3.6
vs. 0.528), 5.5 times (3.6 vs. 0.654), and 8.9 times (3.6 vs.
0.404) compared with those of the GTX 1080 Ti, RTX 3070,
RTX 3090, and Tesla V100 GPUs, respectively.



4256 IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS—I: REGULAR PAPERS, VOL. 68, NO. 10, OCTOBER 2021

TABLE IV

EXPERIMENTAL RESULTS OF THE BCA AND THE STATE-OF-THE-ART FPGA-BASED DESIGNS

c) Expected performance of the BCA on ASIC
8 nm: We normalized the power and area efficiencies of
our BCA to the fastest technology, 8 nm, used by the RTX
3070 and RTX 3090 GPUs. The normalized results should
be understood as a rough estimation to predict the expected
performance of our BCA if it is fabricated on ASIC 8nm.
These are not experimental results; therefore, the evaluation
may not be completely correct. We provide the following
statement for reference purposes simply to demonstrate our
expectations. If our proposed BCAs were fabricated with
the same fabrication technology as that used to fabricate
the modern RTX 3070 and RTX 3090 GPUs (ASIC 8 nm),
the power efficiency of the BCA would be expected to improve
by 1315 times (1381 vs. 1.05) and 1160 times (1381 vs.
1.19), respectively, compared with these GPUs. The BCA area
efficiency is expected to improve by 451 times (238 vs. 0.528)
and 394 times (238 vs. 0.654) compared with these GPUs
(RTX 3070 and RTX 3090).

D. Performance Evaluation: BCA Vs. FPGA-Based Works

This section compares the performance of the proposed
BCA and that of the related works embedded in FPGAs,
as shown in Table IV. We evaluated two design levels: stand-
alone and SoC. At the standalone level, only the computation
units (ALUs) and the controller (CTRL) of the BCA were syn-
thesized and evaluated. It needs 86025 LUTs and 267706 flip-
flops, consumes 3.39 W when operating at 400 MHz and
provides a processing speed of 400 MHz. The area and
power efficiencies of the proposed BCA are 4.65 Mhps/kLUT,
and 118 Mhps/W, respectively. Compared with the values
in previous studies, i.e., [20], [31], and [32], the area effi-
ciency of the proposed BCA is improved by 6.2-, 13.3-, and
20.2-fold, respectively, and the power efficiency of the pro-
posed BCA is improved by 15.7-, 25.9-, and 24.4-fold,
respectively.

At the SoC design level, the full circuit of the BCA was syn-
thesized and evaluated. It needs 228666 LUTs and 512770 flip-
flops, consumes 8.38 W when operating at 400 MHz and

provides a processing rate of 360 MHz. The numbers of
LUTs and flip-flops are significantly increased compared with
those at the BCA standalone level. However, the increase
is reasonable because local memories such as WRAM and
HRAM have been synthesized from LUTs and flip-flops.
Compared with the baseline design in [28], the number of
LUTs of the BCA is slightly increased due to the double
number of ALU units per D-PE, which is consistent with
our theoretical analysis in section IV.B. It is worth noting
that while the number of ALU units per D-PE is doubled,
the HRAM blocks per D-PE have been eliminated. Therefore,
the numbers of LUTs are not doubled but slightly increased,
as shown in Table IV. The number of flip-flops of the BCA
is increased by approximately 1.5× compared with that of
the baseline design in [28] for two reasons. First, the number
of WRAM blocks per D-PE in the BCA is doubled. Second,
the experimental results of [28] are obtained in case L = 3,
which is much smaller than the requirement of real applica-
tions. Overall, the hardware and power efficiency of the BCA
are expected to be much better than those of [28] because
the processing rate for computing double SHA-256 of the
BCA is much higher than that of [28]. Numerically, compared
with previous studies, i.e., [33] and [28], the BCA hardware
efficiency is improved 17.4- and 3-fold, respectively, and the
power efficiency is improved 6.4- and 2.77-fold, respectively.
In particular, the hardware resources and power consumption
of [28] were obtained in the case of L = 3, which is
too small for real applications. The processing rate of the
accelerator in [28] was calculated by ignoring the processing
rate degradation due to the data transfer bottleneck to/from
the accelerator. Therefore, we believe that the improvement
in area and power efficiencies of the BCA vs. the accelerator
in [28] will be much higher than the aforementioned values if
both accelerators are utilized for mining blockchain networks
in reality.

V. CONCLUSION

The computation of the double SHA-256 function is respon-
sible for nearly all of the energy consumption required to



TRAN et al.: BCA: 530-mW MULTICORE BCA FOR POWER-CONSTRAINED DEVICES 4257

secure a BC network. In this paper, we have proposed an
ultralow power and high-throughput BCA architecture for
accelerating double SHA-256 computation. Unlike the related
studies that accelerated the computation only, our BCA is
focused on improving the accelerator throughput at the system
level. We proposed a multiple local memory structure of
WRAM and GRAM to both reduce the data transfer time
between the BCA and external DDR memory and improve
the hardware efficiency of the BCA calculation units. The
D-PE architecture was originally introduced such that the
entire double SHA-256 function is computed inside a single
D-PE and all D-PEs work as independent processing cores to
compute a large number of double SHA-256 functions simul-
taneously. No wire connection among the D-PEs is required,
which results in lower power consumption and less chip area.
The NAU and VHC mechanisms were employed such that
the BCA computes up to 232 double SHA-256 functions until
it finds a valid hash value without interruption for external
data transfer. Furthermore, a cascaded multiple BCA chip
model was recommended for endlessly increasing the total
processing throughput to meet real system requirements. Our
experiments on FPGA Alveo U280 and ASIC Renesas SOTB
65 nm technology have proven that the BCA successfully
performs mining tasks for multiple BC networks with much
lower power consumption and hardware costs than the state-of-
the-art CPU and GPU platforms. Notably, the power efficiency
of the BCA layout chip on 65 nm technology is 2428,
173, 162, 143, and 84 times better than that of the Intel
i9-10940X CPU, GTX 1080 Ti GPU, RTX 3070 GPU, RTX
3090 GPU, and Tesla V100 GPU, respectively. We even
expect to improve the power efficiency up to 1160 times
relative to the currently fastest Nvidia GPU RTX 3090 if
the BCA is fabricated with the same RTX 3090 technology
(ASIC 8 nm).

Currently, we are investigating how to apply approximate
computing and neuromorphic computing techniques to reduce
the power consumption of the current BCA to approximately
1 mW . At the level of 1 mW , the BCA would be able to
operate sustainably using green energy harvested from solar,
movement, and thermal sources. We are looking forward to
a bright future in which not only power-constrained devices,
such as autonomous cars, smartphones, and smart watches but
also small sensors are able to employ our BCA to participate
in securing BC networks. The network would then become
truly decentralized such that no one and nothing is able to
destroy it.

APPENDIX

The source codes and the synthesized and laid out results
of our experiments on FPGA and ASIC can be found at
https://github.com/archlab-naist/530mW-BCA/

ACKNOWLEDGMENT

The BCA architecture was synthesized and laid out on
ASIC Renesas SOTB 65 nm technology under the Japan VLSI
Design and Education Center (VDEC) license.

REFERENCES

[1] Japan Cabinet Office. Society 5.0. Accessed: Mar. 26, 2021. [Online].
Available: https://www8.cao.go.jp/cstp/english/society5_0/index.html

[2] H. L. Pham, T. H. Tran, and Y. Nakashima, “A secure remote healthcare
system for hospital using blockchain smart contract,” in Proc. IEEE
Globecom Workshops (GC Wkshps), Abu Dhabi, United Arab Emirates,
Dec. 2018, pp. 1–6, doi: 10.1109/GLOCOMW.2018.8644164.

[3] H. L. Pham, T. H. Tran, and Y. Nakashima, “Practical anti-counterfeit
medicine management system based on blockchain technology,” in
Proc. 4th Technol. Innov. Manage. Eng. Sci. Int. Conf. (TIMES-
iCON), Bangkok, Thailand, Dec. 2019, pp. 1–5, doi: 10.1109/TIMES-
iCON47539.2019.9024674.

[4] V.-C. Nguyen, H.-L. Pham, T.-H. Tran, H.-T. Huynh, and Y. Nakashima,
“Digitizing invoice and managing VAT payment using blockchain
smart contract,” in Proc. IEEE Int. Conf. Blockchain Cryptocur-
rency (ICBC), Seoul, South Korea, May 2019, pp. 74–77, doi:
10.1109/BLOC.2019.8751256.

[5] S. Fukao and C. Ballinder, Mobility Economics. Tokyo, Japan: Nikkei,
2020, pp. 85–96.

[6] M. Rahouti, K. Xiong, and N. Ghani, “Bitcoin concepts, threats,
and machine-learning security solutions,” IEEE Access, vol. 6,
pp. 67189–67205, 2018.

[7] H. Vranken, “Sustainability of Bitcoin and blockchains,” Current Opin-
ion Environ. Sustain., vol. 28, pp. 1–9, Oct. 2017.

[8] J. Taskinsoy, “Bitcoin and Turkey: A good match or a perfect storm?”
SSRN Electron. J., pp. 1–23, Oct. 2019, doi: 10.2139/ssrn.3477849.

[9] R. García, I. Algredo-Badillo, M. Morales-Sandoval, C. Feregrino-Uribe,
and R. Cumplido, “A compact FPGA-based processor for the secure hash
algorithm SHA-256,” Comput. Electr. Eng., vol. 40, no. 1, pp. 194–202,
Jan. 2014.

[10] M. D. Rote, N. Vijendran, and D. Selvakumar, “High performance
SHA-2 core using the round pipelined technique,” in Proc. IEEE Int.
Conf. Electron., Comput. Commun. Technol. (CONECCT), Jul. 2015,
pp. 1–6.

[11] L. Dadda, M. Macchetti, and J. Owen, “The design of a high speed
ASIC unit for the hash function SHA-256 (384, 512),” in Proc. Design,
Autom. Test Eur. Conf. Exhib., Feb. 2004, pp. 70–75.

[12] M. Padhi and R. Chaudhari, “An optimized pipelined architecture of
SHA-256 hash function,” in Proc. 7th Int. Symp. Embedded Comput.
Syst. Design (ISED), Dec. 2017, pp. 1–4.

[13] X. Zhang, R. Wu, M. Wang, and L. Wang, “A high-performance parallel
computation hardware architecture in ASIC of SHA-256 hash,” in Proc.
21st Int. Conf. Adv. Commun. Technol. (ICACT), Feb. 2019, pp. 52–55.

[14] R. Chaves, G. Kuzmanov, L. Sousa, and S. Vassiliadis, “Cost-efficient
SHA hardware accelerators,” IEEE Trans. Very Large Scale Integr.
(VLSI) Syst., vol. 16, no. 8, pp. 999–1008, Aug. 2008.

[15] R. P. McEvoy, F. M. Crowe, C. C. Murphy, and W. P. Marnane, “Opti-
misation of the SHA-2 family of hash functions on FPGAs,” in Proc.
IEEE Comput. Soc. Annu. Symp. Emerg. VLSI Technol. Architectures
(ISVLSI), Mar. 2006, pp. 317–322.

[16] S. B. Suhaili and T. Watanabe, “Design of high-throughput SHA-256
hash function based on FPGA,” in Proc. 6th Int. Conf. Electr. Eng.
Informat. (ICEEI), Nov. 2017, pp. 1–6.

[17] H. E. Michail, G. S. Athanasiou, V. Kelefouras, G. Theodoridis, and
C. E. Goutis, “On the exploitation of a high-throughput SHA-256 FPGA
design for HMAC,” ACM Trans. Reconfigurable Technol. Syst., vol. 5,
no. 1, pp. 1–28, Mar. 2012.

[18] T. H. Tran, S. Kanagawa, D. P. Nguyen, and Y. Nakashima, “ASIC
design of MUL-RED Radix-2 pipeline FFT circuit for 802.11ah system,”
in Proc. IEEE Symp. Low-Power High-Speed Chips (COOL CHIPS),
Yokohama, Japan, Apr. 2016, pp. 1–3.

[19] F. Opritoiu, S. L. Jurj, and M. Vladutiu, “Technological solutions for
throughput improvement of a secure hash algorithm-256 engine,” in
Proc. IEEE 23rd Int. Symp. Design Technol. Electron. Packag. (SIITME),
Oct. 2017, pp. 159–164.

[20] R. Martino and A. Cilardo, “A flexible framework for exploring,
evaluating, and comparing SHA-2 designs,” IEEE Access, vol. 7,
pp. 72443–72456, 2019.

[21] R. Martino and A. Cilardo, “A configurable implementation of the
SHA-256 hash function,” in Proc. Int. Conf. P2P, Parallel, Grid,
Cloud Internet Comput. Cham, Switzerland: Springer, Nov. 2019,
pp. 558–567.

[22] F. Kahri, B. Bouallegue, M. Machhout, and R. Tourki, “An FPGA
implementation and comparison of the SHA-256 and blake-256,” in
Proc. 14th Int. Conf. Sci. Techn. Autom. Control Comput. Eng. (STA),
Dec. 2013, pp. 152–157, doi: 10.1109/STA.2013.6783122.

http://dx.doi.org/10.1109/GLOCOMW.2018.8644164
http://dx.doi.org/10.1109/TIMES-iCON47539.2019.9024674
http://dx.doi.org/10.1109/TIMES-iCON47539.2019.9024674
http://dx.doi.org/10.1109/BLOC.2019.8751256
http://dx.doi.org/10.2139/ssrn.3477849
http://dx.doi.org/10.1109/STA.2013.6783122


4258 IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS—I: REGULAR PAPERS, VOL. 68, NO. 10, OCTOBER 2021

[23] Y. Chen and S. Li, “A high-throughput hardware implementation of
SHA-256 algorithm,” in Proc. IEEE Int. Symp. Circuits Syst. (ISCAS),
Oct. 2020, pp. 1–4.

[24] V. B. Suresh, S. K. Satpathy, and S. K. Mathew, “Optimized SHA-
256 datapath for energy-efficient high-performance Bitcoin mining,”
U.S. Patent 10 755 242 B2, Aug. 25, 2020.

[25] V. B. Suresh, S. K. Satpathy, and S. K. Mathew, “Bitcoin mining hard-
ware accelerator with optimized message digest and message scheduler
datapath,” U.S. Patent 10 142 098 B2, Nov. 27, 2018.

[26] H. L. Pham, T. H. Tran, T. D. Phan, V. T. D. Le, D. K. Lam, and
Y. Nakashima, “Double SHA-256 hardware architecture with com-
pact message expander for Bitcoin mining,” IEEE Access, vol. 8,
pp. 139634–139646, 2020, doi: 10.1109/ACCESS.2020.3012581.

[27] Y. Zhang et al., “A new message expansion structure for full pipeline
SHA-2,” IEEE Trans. Circuits Syst. I, Reg. Papers, vol. 68, no. 4,
pp. 1553–1566, Apr. 2021, doi: 10.1109/TCSI.2021.3054758.

[28] T. H. Tran, H. L. Pham, and Y. Nakashima, “A high-performance
multimem SHA-256 accelerator for society 5.0,” IEEE Access, vol. 9,
pp. 39182–39192, 2021, doi: 10.1109/ACCESS.2021.3063485.

[29] C. Studer, S. Fateh, and D. Seethaler, “ASIC implementation of
soft-input soft-output MIMO detection using MMSE parallel inter-
ference cancellation,” IEEE J. Solid-State Circuits, vol. 46, no. 7,
pp. 1754–1765, Jul. 2011, doi: 10.1109/JSSC.2011.2144470.

[30] N. Prasad, I. Chakrabarti, and S. Chattopadhyay, “An energy-efficient
network-on-chip-based reconfigurable Viterbi decoder architecture,”
IEEE Trans. Circuits Syst. I, Reg. Papers, vol. 65, no. 10, pp. 3543–3554,
Oct. 2018, doi: 10.1109/TCSI.2018.2825362.

[31] D. K. N. and R. Bhakthavatchalu, “Parameterizable FPGA implementa-
tion of SHA-256 using blockchain concept,” in Proc. Int. Conf. Commun.
Signal Process. (ICCSP), Apr. 2019, pp. 0370–0374.

[32] R. Martino and A. Cilardo, “Designing a SHA-256 processor for
blockchain-based IoT applications,” Internet Things, vol. 11, Sep. 2020,
Art. no. 100254.

[33] M. Kammoun, M. Elleuchi, M. Abid, and M. S. BenSaleh, “FPGA-based
implementation of the SHA-256 hash algorithm,” in Proc. IEEE Int.
Conf. Design Test Integr. Micro Nano-Syst. (DTS), Jun. 2020, pp. 1–6.

Thi Hong Tran (Member, IEEE) received the
bachelor’s degree in physics and the master’s
degree in microelectronics from Vietnam National
University-Ho Chi Minh City University of Sci-
ence (VNU-HCMUS), Vietnam, in 2008 and 2012,
respectively, and the Ph.D. degree in information
science from Kyushu Institute of Technology, Japan,
in 2014. Since 2015, she has been with Nara Institute
of Science and Technology (NAIST), Japan, as a
full-time Assistant Professor. Her research interests
include digital hardware circuit design and algo-

rithms related to wireless communication, communication security, blockchain
technologies, SHA-2, SHA-3, and cryptography. She is a Regular Member of
IEEE, IEICE, and REV-JEC.

Hoai Luan Pham (Member, IEEE) received
the bachelor’s degree in computer engineer-
ing from Vietnam National University Ho Chi
Minh City-University of Information Technology
(VNUHCM-UIT), Vietnam, in 2018, and the mas-
ter’s degree in information science from Nara Insti-
tute of Science and Technology (NAIST), Japan,
in 2020, where he is currently pursuing the Ph.D.
degree. His research interests include blockchain
technology and cryptography.

Tri Dung Phan received the bachelor’s degree
in computer engineering (hardware design)
from Vietnam National University Ho Chi
Minh City-University of Information Technology
(VNUHCM-UIT) in 2019. He is currently pursuing
the master’s degree in computer architecture.
His research interest includes secure hash
algorithm (SHA) in hardware design, including
FPGA and ASIC design.

Yasuhiko Nakashima (Senior Member, IEEE)
received the B.E., M.E., and Ph.D. degrees in com-
puter engineering from Kyoto University in 1986,
1988, and 1998, respectively. He was a Computer
Architect with the Department of Computer and
System Architecture, FUJITSU Ltd., from 1988 to
1999. From 1999 to 2005, he was an Associate
Professor with the Graduate School of Economics,
Kyoto University. Since 2006, he has been a Pro-
fessor with the Graduate School of Information
Science, Nara Institute of Science and Technology.

His research interests include computer architecture, emulation, circuit design,
and accelerators. He is a fellow of IEICE, a Senior Member of IPSJ, and a
Member of IEEE CS and ACM.

http://dx.doi.org/10.1109/ACCESS.2020.3012581
http://dx.doi.org/10.1109/TCSI.2021.3054758
http://dx.doi.org/10.1109/ACCESS.2021.3063485
http://dx.doi.org/10.1109/JSSC.2011.2144470
http://dx.doi.org/10.1109/TCSI.2018.2825362


Received December 22, 2021, accepted January 15, 2022, date of publication January 25, 2022, date of current version February 2, 2022.

Digital Object Identifier 10.1109/ACCESS.2022.3146148

A High-Efficiency FPGA-Based
Multimode SHA-2 Accelerator
HOAI LUAN PHAM 1, (Graduate Student Member, IEEE),
THI HONG TRAN 2, (Member, IEEE),
VU TRUNG DUONG LE 1, (Graduate Student Member, IEEE),
AND YASUHIKO NAKASHIMA 1, (Senior Member, IEEE)
1Graduate School of Information Science, Nara Institute of Science and Technology (NAIST), Nara 630-0192, Japan
2Graduate School of Engineering, Osaka City University, Osaka 558-8585, Japan

Corresponding author: Thi Hong Tran (hong@osaka-cu.ac.jp)

This work was supported by the Japan Science and Technology Agency (JST) under a Strategic Basic Research Programs Precursory
Research for Embryonic Science and Technology (PRESTO) under Grant JPMJPR20M6.

ABSTRACT The secure hash algorithm 2 (SHA-2) family, including the SHA-224/256/384/512 hash func-
tions, is widely adopted inmanymodern domains, ranging from Internet of Things devices to cryptocurrency.
SHA-2 functions are often implemented on hardware to optimize performance and power. In addition to the
high-performance and low-cost requirements, the hardware for SHA-2 must be highly flexible for many
applications. This paper proposes an SHA-2 hardware architecture named the multimode SHA-2 accelerator
(MSA), which has high performance and flexibility at the system-on-chip level. To achieve high performance
and flexibility, our accelerator applies three optimal techniques. First, a multimode processing element
architecture is proposed to enable the accelerator to compute various SHA-2 functions for many applications.
Second, a three-stage arithmetic logic unit pipeline architecture is proposed to reduce the critical paths
and hardware resources. Finally, nonce generator and nonce validator architectures are proposed to reduce
memory access andmaximize the performance of the proposedMSA for blockchainmining applications. The
MSA accuracy is tested on a real hardware platform (theXilinxAlveoU280 FPGA). The experimental results
on the field programmable gate array (FPGA) prove that the proposed MSA achieves significantly better
performance, hardware efficiency, and flexibility than previous works. The evaluation results for energy
efficiency show that the proposed MSA achieves up to 38.05 Mhps/W, which is 543.6 and 29 times better
than the state-of-the-art Intel i9-10940X CPU and RTX 3090 GPU, respectively.

INDEX TERMS SHA-2, blockchain mining, FPGA, multimode, Bitcoin, accelerator.

I. INTRODUCTION
The Secure Hash Algorithm (SHA) published by the National
Institute of Standard and Technology (NIST) [1] has three
families of cryptographic hash functions, including SHA-1,
SHA-2, and SHA-3. Currently, SHA-1 is deprecated due to
its found vulnerabilities [2]. SHA-2 was firstly introduced
in 2001 as an inevitable alternative to SHA-1. SHA-3 is the
newest generation published by NIST in 2015 [3]. However,
SHA-3 has not yet reached widespread diffusion because
of two main reasons. First, there was no significant vul-
nerability to SHA-2 has been found yet. Second, the hard-
ware architecture of SHA-3 is completely different from that

The associate editor coordinating the review of this manuscript and

approving it for publication was Vincenzo Conti .

of SHA-2, while most of the systems nowadays have been
secured by SHA-2. Replacing SHA-2 by SHA-3 will require
a huge investment in new hardware infrastructure to support
SHA-3. For these reasons, SHA-2 and SHA-3 become two
independent research themes that are conducted in parallel.
Systems relied on old infrastructures intend to use SHA-2,
while the completely new system may consider applying
SHA-3. Therefore, SHA-2 is still one of the most reli-
able hash functions for long-term collision resistance and
is widely used today. In particular, SHA-224, SHA-256,
SHA-384, and SHA-512 are the most famous hash func-
tions of the SHA-2 family and are widely used in many
generic security applications, such as hash-based message
authentication codes [4]–[6], error detection and correc-
tion (EDAC) [7], digital signature algorithms (DSAs) [8],

11830 This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/ VOLUME 10, 2022

https://orcid.org/0000-0002-4272-0132
https://orcid.org/0000-0002-2744-0079
https://orcid.org/0000-0002-0438-3809
https://orcid.org/0000-0002-9457-5061
https://orcid.org/0000-0002-8718-111X


H. L. Pham et al.: High-Efficiency FPGA-Based Multimode SHA-2 Accelerator

pseudorandom number generators (PRNGs) [9], RFID [10]
and trusted computing [11]. Beyond generic applications,
SHA-2, especially SHA-256, is chosen as the underlying
hash function in blockchain, the modern technology behind
well-known cryptocurrencies such as Bitcoin [12].

A. GENERIC APPLICATIONS
In network security, client devices may be sufficiently power-
ful to execute a limited number of hash computations, while
servers often perform many hash computation tasks with var-
ious SHA-2 functions to serve authentication requests from
clients. Thus, the server side needs SHA-2 hardware that has
high performance and flexibility to perform a large num-
ber of hash computations with various hash functions [13].
In addition, with the development of modern technology such
as the Internet of Things (IoT), data security for millions
of devices increases the processing requirements for central
servers. To reduce the processing pressure on servers, edge
computing has recently been used to share hash computing
requirements from IoT devices. Thus, edge computing also
needs SHA-2 hardware with high performance and flexibility
to execute a large number of hash computations. For the above
reasons, developing a high-performance and flexible SHA-2
hardware accelerator has become a current research trend.

B. BLOCKCHAIN APPLICATIONS
SHA-2 functions play a crucial role in blockchain, an emerg-
ing technology used in many famous cryptocurrencies, such
as Bitcoin, Litecoin, and Ethereum [14]. Among the hash
functions of the SHA-2 family, SHA-256 is commonly used
in many blockchains [15]. For example, SHA-256 is used to
build Merkle trees that help the blockchain network maintain
the integrity of transactions [16]. The most prominent use of
SHA-256, particularly double SHA-256, is the hash computa-
tion in the mining process for blockchain networks, the most
well-known of which is Bitcoin. Accordingly, the blockchain
mining process adds a new valid block to the chain of blocks
by hashing a block header, which includes values such as
the previous block hash, Merkle root hash, timestamp, target,
and nonce. For a new block to be considered valid, miners
must find a valid nonce to make the hashing output value less
than the target [17]. To quickly determine the valid nonce and
win the reward, miners often use an ultrahigh-performance
double SHA-256 circuit to speed up the hash computation
of the block header. The double SHA-256 circuit must be
fast enough to compete favorably in a blockchain network
and be power efficient so that the energy costs do not exceed
the mining revenue [18], [19]. Therefore, developing high-
processing-rate double SHA-256 hardware with high hard-
ware efficiency has recently become an attractive research
area.

Conventional works have applied many techniques or
proposed new architectures to optimize the performance of
SHA-2 hardware. For example, the authors of [20]–[22]
applied the pipeline technique to shorten the critical path in
the SHA-256 and SHA-512 hardware. The authors of [23]

FIGURE 1. High-level diagram of the proposed system.

proposed the reordering computation method to reduce the
critical path of the SHA-256 circuit. An unrolling technique
with multiple factors was proposed in [24] and [25] to reduce
the delay of the SHA-2 loop, thereby increasing the through-
put. In [26]–[30], several hardware techniques, such as CSA,
unrolling, and pipelining, were applied to SHA-2 accel-
erators to increase throughput. Although the performance
of the accelerators in [20]–[30] was effectively optimized,
these accelerators still deliver poor performance and are not
compatible with high-speed SHA-2 applications. To address
speed-demanding applications, the authors of [31]–[38] pro-
posed several new hardware architectures to achieve high per-
formance for SHA-2 computations. For instance, the authors
of [31]–[36] proposed a full pipeline architecture to acceler-
ate SHA-256 computation for blockchainmining. In addition,
a multicore architecture was proposed in [37], [38] to perform
multiple SHA-256 processes simultaneously, thereby achiev-
ing high performance. Despite the advantage of a high pro-
cessing rate, the accelerators in [31]–[38] have no flexibility
because they can only execute a single hash function, such as
the SHA-256 function. Overall, the accelerators in [20]–[38]
need to improve performance and flexibility to be compati-
ble with multiple SHA-2 applications, ranging from generic
applications to blockchain mining.

This work proposes a multimode SHA-2 accelera-
tor (MSA) that achieves a high processing rate and flexi-
bility for generic applications and blockchain mining. The
high-level diagram of the proposed system is shown in Fig. 1,
where the proposed MSA is applied to support servers, edge
computing nodes, or miners to perform high-speed compu-
tations with high flexibility. Concretely, the server or edge
computing node can employ the proposed MSA to perform
a large number of hash computations with a variety of hash
functions, including SHA-224, SHA-256, SHA-384, and
SHA-512. In addition, miners can adopt our accelerator to
accelerate the double SHA-256 calculation for blockchain
mining process.

To achieve the high processing rate and flexibility for
multiple applications, the proposed MSA employs several
optimization techniques, such as multiple multimode pro-
cessing elements (M-PE), dual arithmetic logic unit (ALU)
architecture inside each M-PE, a nonce generator (NOG),
and a nonce detector (NOD). The impact of those

VOLUME 10, 2022 11831



H. L. Pham et al.: High-Efficiency FPGA-Based Multimode SHA-2 Accelerator

TABLE 1. Parameters of the SHA-2 functions.

optimization techniques is analyzed and evaluated in this
paper. The implementation and verification of the proposed
MSA on the Xilinx Alveo U280 field programmable gate
array (FPGA) for general applications and blockchain mining
are explicitly presented. The experimental results on the
FPGA show that the proposed MSA is better than state-
of-the-art works in terms of performance, hardware effi-
ciency, and flexibility. Compared to the currentmost powerful
CPU and GPU, the FPGA-based MSA is better than the
Intel i9-10940X CPU and RTX 3090 GPU in terms of power
efficiency.

The remainder of this paper is organized as follows:
Section II presents the background. Section III describes our
proposed multimode SHA-2 accelerator in detail. Section IV
presents the implementation, verification, and evaluation of
the proposed MSA on the FPGA. Finally, Section V con-
cludes the paper.

II. BACKGROUND
This section briefly describes basic information about the
SHA-2 functions for generic applications and blockchain
mining. Additionally, the preliminary ideas for the proposed
MSA are clearly analyzed.

A. SHA-2 FUNCTIONS FOR GENERIC APPLICATIONS
SHA-2 is a set of one-way and collision-resistant cryp-
tographic hash functions. The SHA-2 family consists of
six hash functions, namely, SHA-224, SHA-256, SHA-384,
SHA-512, SHA-512/224, and SHA-512/256. Because the
SHA-512/224 and SHA-512/256 functions are truncated ver-
sions of SHA-512 and are not widely used, we focus on only
the first four hash functions, SHA-224, SHA-256, SHA-384,
and SHA-512. These four hash functions are essentially the
same in terms of operational process, but they have differ-
ences in parameters, which are shown in Table 1. Based on
the similarities of the parameters and operational processes,
the SHA-2 hashing algorithms are divided into two main
groups: SHA-224/256 (SHA-224 or SHA-256) and SHA-
384/512 (SHA-384 or SHA-512). Algorithm 1 shows the

Algorithm 1 Hash = SHA-2(Message)
1: SHA224/256:
2: R = 64, S = 512, Llen = 64, D = 32, nH = 7/8
3: M consists of N 512-bit padded blocks.
4: H0

[0:7] : 32-bit square root of the first 8 primes.
5: K[0:63]: 32-bit square root of the first 64 primes.
6: SHA384/512:
7: R = 80, S = 1024, Llen = 128, D = 64, nH = 6/8
8: M consists of N 1024-bit padded blocks.
9: H0

[0:7] : 64-bit square root of the first 8 primes.
10: K[0:79]: 64-bit square root of the first 80 primes.
11: L[0:Llen−1] = length_in_bit(message)
12: N = (L ÷ S) + 1
13: (M[0:N−1], N) = Padding (message)

Padding:
14: k = S − (1 + D + (L mod S))
15: Pad = {1, zeros(1,k), L}
16: M[0:N−2]

= message[0 : ((N − 2) ∗ S)− 1]
17: MN−1

= {message[(N − 2) ∗ S : L − 1], Pad}
18: for t← 0 to (N-1) do

W[0:R−1] =Message_Expansion(Mt )
Message Expansion:

19: for i← 0 to (R-1) do
20: if i < 16 then
21: Wi =Mt

[i∗D:(i+1)∗D]
22: else
23: Wi =Wi−16 + σ0(Wi−15) +Wi−7 + σ1(Wi−2)
24: end if
25: end for

Ht+1
=MessageCompression(Ht , K, W)

Message Compression:
26: a = H t

0, b = H t
1, c = H t

2, d = H t
3

e = H t
4, f = H t

5, g = H t
6, h = H t

7
27: for i← 0 to (R-1) do
28: T1 = h + 61(e) + Ch(e,f,g) + Ki +Wi
29: T2 = h + 60(a) +Maj(a,b,c)
30: h = g, g = f, f = e, e = d + T1,

d = c, c = b, b = a, a = T1 + T2
31: end for
32: H t+1

0 = H t
0 + a, . . .H t+1

7 = H t
7 + h

33: end for
34: return Hash = {HN

0 , . . . ,H
N
nH−1}

SHA-2 algorithm pseudocode. It includes three main steps:
padding, message expansion, and message compression.

1) PADDING
The padding process is performed to make the last block have
the same size as the other blocks. Concretely, the original
message has L bits, and then the bit ‘‘1’’ is appended at
the beginning bit and k zero bits at the remaining bits. The
appended bits must satisfy the equation L+1+k ≡ 448 mod
512 for SHA-224/256 functions or the equation L + 1+ k ≡
896 mod 1024 for SHA-384/512 functions. Then, the padded

11832 VOLUME 10, 2022



H. L. Pham et al.: High-Efficiency FPGA-Based Multimode SHA-2 Accelerator

message is divided into N blocks (M[1:N ]) of S-bit size, where
S is 512 for SHA-224/256 and 1024 for SHA-384/512.

2) MESSAGE EXPANSION
After padding, all blocks (M[1:N ]) have a fixed length of
S bits. Each block is compressed through two processes: mes-
sage expansion (ME) and message compression (MC). Both
ME and MC processes include R loops, where R is 64 for
SHA-224/256 and 80 for SHA-384/512. Sixteen chunks of
the 32/64-bit word (denoted asWi, 0≤ i≤ 15) parsed from the
tth block (denoted as Mt ) are compressed in the first 16 loops
of the MC process. The ME process expands the message
input (Mt ) to the R-16 chunks of the 32/64-bit Wi (16 ≤ i
≤ R-1) required in the last R-16 loops of the MC process.

3) MESSAGE COMPRESSION
Basically, the MC process compresses the R chunks of
the 32/64-bit Wi (0 ≤ i ≤ R-1) from the ME process
into a 224/256/384/512-bit hash output. The MC process
involves three main steps: initialization, compression, and
final adding. In the initialization step, eight internal hash
values (denoted as a, b, c, d, e, f , g, h) are assigned to the
eight hash inputsH t

0,H
t
1, . . . ,H

t
7. Note that in theMC process

for the first block (M0, t = 0), the eight hash inputs are the
eight H constants (H0

[0:7]: eight 32- or 64-bit decimal places of
the square roots of the first eight primes). In the compression
step, the eight internal hash values a, b, . . . , h are computed
and updated through R loops. In the final adding step, the
hash output (Ht+1) is updated by adding the eight internal
hash values a, b, . . . , h to the eight hash inputs H t

0, H
t
1, . . . ,

H t
7. After finishing the ME and MC process for block Mt+1,

the Ht+1 value is used as the hash input in the MC process for
the next block (Mt+1). Finally, the concatenation of the hash
output HN updated by compressing the last block (MN−1) is
the final hash output of the hash algorithm.

The details of the logical functions σ0(x), σ1(x), 60(x),
61(x), Ch(x, y, z), and Maj(x, y, z) in the ME and MC pro-
cesses can be found at [39]. Note that the logical functions
σ0(x), σ1(x), 60(x), and 61(x) are different between SHA-
224/SHA-256 and SHA-384/SHA-512. Algorithm 1 uses
parameters to distinguish the hash functions of the SHA-2
family. The most typical parameters, such as S, nH, D, and
R, are presented in Table 1. In addition, the parameter Llen is
used to determine the length of the L string, where the L string
is a bit string representing the length of the input message in
bits padded to the last block.

In practice, the storage of the R-16 chunks (W[16:R−1])
in the last R-16 loops of the ME process will occupy a
large amount of memory. To reduce hardware resources,
most previous works, such as [27], [29], [40], employed a
shift-register method for the message expansion calculation,
which uses only sixteen 32/64-bit registers to store the last
16 chunks, and the sixteen 32/64-bit registers must shift con-
tinuously during the loop calculation. Therefore, this paper
also applies the shift-register method to reduce hardware
resources but does not consider it a contribution.

FIGURE 2. Double SHA-256 architecture for blockchain mining.

B. DOUBLE SHA-256 FOR BLOCKCHAIN MINING
The most famous application of SHA-2 is Bitcoin cryp-
tocurrency. Essentially, Bitcoin operates based on blockchain
technology, which uses the double SHA-256 (SHA-256d)
to validate transactions. Concretely, blockchain technology
stores transactions in a block, and then blocks are linked
together to become a chain of blocks known as ledgers [41].
To add the new block to the ledger, miners in the blockchain
network compete for the SHA-256d computation of block
headers as a proof of work (PoW) to find a valid block and
receive a decent reward, commonly called blockchainmining.
SHA-256d is not a variant hash function of the SHA-2 family
but calculates SHA-256 twice. For example, SHA-256d(x) is
equivalent to SHA-256(SHA-256(x)). In blockchain mining,
SHA-256d is used to prevent length extension attacks [42].

Fig. 2 illustrates the overview architecture of SHA-256d
for blockchain mining. Specifically, the message input to
the SHA-256d computation is the 1024-bit block header,
including a 32-bit version, a 256-bit hash of the previous
block, a 256-bit hash of the Merkle root, a 32-bit timestamp,
a 32-bit target, a 32-bit nonce, and 384-bit padding. The
1024-bit message is divided into two 512-bit messages.
Then, SHA-256d0 computes the first 512-bit message, and
SHA-256d1 calculates the final 512-bit message. Due to the
double SHA-256 requirement, SHA-256d2 compresses the
256-bit hash output from SHA-256d1. In blockchain mining,
the final hash output from SHA-256d2 is compared with
the target hash to determine the valid nonce. If the final
hash output is smaller than the target hash, the valid nonce
will be determined, and a new block will be added to the
ledger. Otherwise, the nonce is increased by one to create
the new 1024-bit message for the SHA-256d computation
again. Because of the infrequent change of the first 512-bit
message, SHA-256d0 is regularly computed at the software
level. Meanwhile, the nonce value has to be tried billions
of times to find a valid nonce, causing the final 512-bit
message to change continuously. Thus, the computation of
SHA-256d1 and SHA-256d2 should often target hardware
design for performance optimization.

C. PRELIMINARY IDEA FOR THE MSA
There are three characteristics of SHA-2 functions that should
be noted. First, SHA-2 functions use only low-cost arithmetic
logic operators, such as adders, rotations, shifts, and XORs.
There are no complex operators, such as multipliers, dividers,

VOLUME 10, 2022 11833



H. L. Pham et al.: High-Efficiency FPGA-Based Multimode SHA-2 Accelerator

and exponents. Second, the number of operators per loop
calculation is quite large, specifically, approximately 50 oper-
ators. Third, the data among loops have high dependencies.
For example, the (i+1)th loop calculation needs the results
of the ith loop calculation. Because of these three character-
istics, high-performance hardware platforms such as CPUs
and GPUs do not efficiently execute the SHA-2 computation.
On the other hand, the memory blocks of the CPUs and
GPUs, such as double data rate (DDR) memory and caches,
are located far away from the computational units. Thus,
the data transfer time between memories and computational
units can constitute a large amount of the total processing
time, which reduces the processing rate. Although CPUs and
GPUs have multiple cores to perform a large number of
hash computations in parallel to achieve high performance,
they often suffer from large power consumption, resulting in
limited energy efficiency.

In another approach, state-of-the-art FPGA-based SHA-2
accelerators are developed to be compatible with the
three characteristics of SHA-2 functions, thus significantly
improving the area and energy efficiency. However, these
accelerators can only execute either SHA-256 or SHA-512
and lack flexibility. The reason is that the calculations in the
SHA-2 functions use different word sizes (32-bit or 64-bit
words), and it is challenging for these accelerators to calculate
both 32-bit and 64-bit words. Moreover, most FPGA-based
accelerators focus only on improving a single computational
block and overlook developing an architecture for a large
amount of hash computation. Thus, these accelerators often
have poor performance when performing multiple hash cal-
culations.

To be applicable for generic applications and blockchain
mining, the SHA-2 hardware architecture should be
high-performance and flexible (supporting various SHA-2
functions) with high hardware efficiency. However, there has
been no high-performance and flexible SHA-2 hardware until
now.

In this study, we develop an MSA that achieves high
performance and flexibility with high hardware efficiency
by eliminating the weaknesses of CPUs, GPUs, and state-
of-the-art FPGA-based accelerators. There are three ideas
in the proposed MSA to achieve this purpose. Idea 1: A
multimode processing element with dual ALUs. Since the
smallest word size in the SHA-2 functions is 32 bits, the
ALU is proposed to perform the 32-bit word calculations.
In the ALU, registers (considered local memory) are located
near computational units to reduce the data transfer time.
There is a problem that a single ALU cannot perform the
SHA-384/512 functions because the calculations in SHA-
384/512 functions use 64-bit words. In addition, a single
ALU is insufficient to execute double SHA-256 computation
for blockchain mining. To solve these problems, we use
dual ALUs that can be concatenated to create one ALU for
calculations of 64-bit words. In another approach for the
concatenation of dual ALUs, the output of the first ALU
is transferred to the input of the second ALU to construct

FIGURE 3. Overview architecture of the proposed multimode SHA-2
accelerator at the system-on-chip level.

a double SHA-256 circuit for blockchain mining. Moreover,
dual ALUs can execute two independent SHA-224/256 func-
tions in parallel to double the processing rate. Because dual
ALUs can improve the performance and flexibility of the
MSA, dual ALUs are located inside each processing ele-
ment PE) of the MSA. By using dual ALUs, the PE can
execute multiple SHA-2 functions (modes); thus, it is called
a multimode processing element (M-PE). Idea 2: Pipelined
dual-ALU architecture. Although only low-cost arithmetic
logic operators are employed, the dual ALUs must use a large
number of operators for the loop calculation, approximately
50 operators. This means that the dual ALUs suffer from a
very long critical path, resulting in a low processing rate.
To shorten the critical path, we employ the pipeline tech-
nique for the dual ALUs. Accordingly, the dual ALUs have
three-stage pipelines, and the computational workload is bal-
anced for each stage. Moreover, the carry-save adder (CSA)
technique is also applied for the dual ALUs to reduce the
critical path and hardware resources. Idea 3: Nonce gen-
erator (NOG) and nonce detector (NOD) mechanisms.
In blockchain mining, the MSA must scan all possible values
of 232 32-bit nonces to find the valid nonce. To scan and
verify one nonce value, the accelerator must exchange at least
1,280-bit data (the 512-bit message input to SHA-256d1, the
256-bit hash input to SHA-256d1, the 256-bit hash input to
SHA-256d2, and the 256-bit hash output) with DDRmemory.
However, the bandwidth transmission between DDRmemory
and the accelerator is limited, which creates a long data
transfer time, thus causing the total processing time to be very
large. Optimizing the accelerator performance for blockchain
mining will be meaningless if the bandwidth transmission
between DDR memory and MSA is bottlenecked. Therefore,
NOG and NOD mechanisms are proposed to solve this prob-
lem. Concretely, the NOG can automatically generate up to

11834 VOLUME 10, 2022



H. L. Pham et al.: High-Efficiency FPGA-Based Multimode SHA-2 Accelerator

FIGURE 4. High-level flowchart of the working session on FPGA.

FIGURE 5. Timing chart of the multimode processing element execution.

232 nonce values, equivalent to creating 232 message inputs
to the SHA-256d computation. On the other hand, the NOD
can automatically verify the hashing output to find a valid
nonce value inside each M-PE. Thanks to the NOG and NOD
mechanisms, the MSA performance for blockchain mining is
not reliant on the transmission bandwidth between the DDR
memory and the accelerator, thus achieving 100% hardware
efficiency.

III. PROPOSED MULTIMODE SHA-2 ACCELERATOR
A. OVERVIEW ARCHITECTURE
Fig. 3 shows the overview architecture of the proposed MSA
at the system-on-chip (SoC) level. The CPU is responsible
for controlling the operations of the entire system. In the
task of controlling the proposed accelerator, the CPU sends a
request to direct memory access (DMA) to transfer data from
the DDR memory to the MSA, where the MSA connects to
DMA via the advanced extensible interface (AXI) bus. The
communication between the CPU and the proposed MSA is
separated into many working sessions. Each working session
of the proposed system is shown in Fig. 4. Concretely, at the
start of a new session, the CPU transfers configuration data
to the proposed MSA. The configuration data are written to
CFGmemory and then are used to configure the hash function
mode of the processing element array (PEA). Afterward, the
CPU sends the input data to the proposed accelerator, includ-
ing themessage and hash inputs. Notably, the input data trans-
fer is executed in parallel with the hash computation of the

FIGURE 6. The memory organization of the MSA: (a) config memory;
(b) shared Wt memory; (c) shared Ht memory; (d) global Ht+1 memory;
(e) mining memory.

proposed MSA to accelerate the total processing rate. After
the completion of the hash computations, the hash outputs
cannot be immediately transferred to DDR memory but must
wait for a request from the CPU. Therefore, we develop a
global hash output memory to store the hash outputs to reduce
the number of DDR memory requests and increase the pro-
cessing rate. In addition, miningmemory is developed to store
the valid nonce and hash output for blockchain mining. After
the CPU finishes reading output data from global hash output
or mining memories, the working session is completed.

The proposed MSA consists of four main components:
the processing element array (PEA), memory, NOG, and
execution controller. The four components are presented as
follows: First, the PEA is the key component of the proposed
MSA that accelerates the hash computation with various
hash functions. The PEA includes sixty-four M-PEs, which
are designed to perform hash computations in pipeline and
parallel, as shown in Fig. 5. When the AXI bus is writing and
reading data to and from an M-PE, the other M-PEs of the
MSA are still executing the hash computation. Accordingly,
the data transfer time between the DDR memory and the
proposed MSA will not affect the total processing rate of the
system if the AXI bus in the system is fast enough. In our sys-
tem, we use an AXI bus with a 512-bit data width to improve
the transfer data time between the DDR memory and the
accelerator. Second, there are five types of memory, includ-
ing configuration memory, shared message (M t ) memory,
shared hash input (H t ) memory, global hash output (H t+1)
memory, and mining memory, to store the configuration data,
message, hash input, hash output, and mining results, respec-
tively. Fig. 6 presents the organization of the five types of

VOLUME 10, 2022 11835



H. L. Pham et al.: High-Efficiency FPGA-Based Multimode SHA-2 Accelerator

FIGURE 7. Multimode processing element (M-PE) architecture.

TABLE 2. Operating mode of dual ALUs.

memory. As shown in Fig. 6 (a), the 512-bit configuration
memory stores configuration information for the execution
controller, NOG, and M-PEs. In Fig. 6 (b) and (c), we present
the organization of the sharedM t and H t memories. Because
M-PEs operate in parallel and pipeline, only one M-PE
receives the message and hash input data at a time. Thus,
the shared H t and H t memories need to store only enough
message and hash input data for one M-PE to minimize the
hardware resources. To continuously write data from the AXI
bus and read data to load to the M-PEs without collision, the
shared M t and H t memories are designed with two memory
banks according to the ping-pong memory mechanism [43].
In particular, while memory bank 0 writes data from the AXI
bus, memory bank 1 reads data to load to the M-PEs, and vice
versa. Since the dual ALUs inside the M-PE are developed in
the three-stage pipeline to execute three hash computations in
parallel, the sharedM t andH t memories must be designed to
store sufficient messages and hash inputs. Specifically, the six
512-bit transactions (denoted T1 to T6) stored in the shared
M t memory are three 1024-bit message inputs, and the three
512-bit transactions (denoted T7 to T9) stored in the shared
H t are three 512-bit hash inputs. In Fig. 6 (d), we present the
global H t+1 memory used to store 192 512-bit hash outputs
(denoted H0 to H191) from sixty-four M-PEs. As shown in
Fig. 6 (e), the mining memory is used to store the valid hash
output, found nonce value, status flag (equal to 0 if no valid
nonce is found and equal to 1 if the valid nonce is found), and
finish flag when the proposed MSA performs the blockchain

mining task. Third, the NOG block is used to automatically
generate up to 232 nonce values, which are employed to
update the 232 messages to the SHA-256d computation for
blockchain mining. The details of the NOG are described in
Section III-D. Fourth, the execution controller controls the
operations of the PEA, memories, and NOG.

B. MULTIMODE PROCESSING ELEMENT (M-PE)
ARCHITECTURE
In the PEA, the processing elements are named multi-
mode processing elements because they are designed to per-
form multiple SHA-2 functions for generic applications and
blockchain mining. In this section, the M-PE architecture is
clarified.

Fig. 7 illustrates the multimode processing element archi-
tecture with dual ALUs. Basically, each ALU executes the
32-bit word calculations in the message expansion and com-
pression processes of the SHA-224/256 functions. However,
one ALU cannot perform the SHA-384/512 computations
because the SHA-384/-512 functions require 64-bit word
calculations. Therefore, it is proposed that each M-PE uses
dual ALUs that can be concatenated to perform 64-bit word
calculations. The dual ALUs are ALU1 and ALU2, where
ALU1 and ALU2 obtain the 32 most significant bits (MSBs)
and the 32 least significant bits (LSBs) in the 64-bit word
calculations, respectively. Additionally, ALU1 andALU2 can
perform two independent 32-bit word calculations in parallel
to double the processing rate of the SHA-224/256 functions.
For ALU1 andALU2 to correctly perform both 32-bit and 64-
bit word calculations, the 32-bit and 64-bit arithmetic logic
operators for the calculations are processed as follows: The
two 32-bit bitwise logic operators in ALU1 and ALU2 can
be concatenated to create one 64-bit bitwise logic operator
because the bitwise logical operators, such as AND, OR, and
XOR, examine one bit at a time. In the shift and rotation
logic operators, two 32-bit operators and one 64-bit operator
execute in parallel, and the results are then selected by a mul-
tiplexer gate. In the arithmetic operator, the two 32-bit adders
in ALU1 and ALU2 can be concatenated to form one 64-bit
adder by turning the 32nd carry bit of the adder in ALU2
on or off. Overall, using dual ALUs, the M-PE can execute
two SHA-224/256 functions in parallel or perform one SHA-
384/512 function with no wasted hardware resources.

In each M-PE, the PE controller controls the concatenation
of the arithmetic logic operators in ALU1 and ALU2 by the
first bit of the two-bit mode (denoted as m) received from
the configuration memory. In addition to concatenating the
arithmetic logic operators, ALU1 and ALU2 can be concate-
nated to create a double SHA-256 (SHA-256d) circuit for
blockchain mining. Accordingly, the hash output of the SHA-
256d1 computation in ALU1 is transferred to the message
input to the SHA-256d2 computation in ALU2. The M-PE
uses the second bit of the two-bit mode to configure ALU1
and ALU2 as the SHA-256d circuit. As a result, ALU1 and
ALU2 can execute the various hash functions for generic
applications and blockchain mining, configured by a two-bit

11836 VOLUME 10, 2022



H. L. Pham et al.: High-Efficiency FPGA-Based Multimode SHA-2 Accelerator

FIGURE 8. The three-stage pipelined dual ALU architecture.

mode received from the configuration memory, as shown in
Table 2. On the other hand, each M-PE can be activated
or deactivated by an enable signal from the configuration
memory to reduce the redundant power consumption. The
power overhead for the unused M-PEs is diminished by the
clock gating technique.

To optimize this system for blockchain mining, we pro-
pose a NOD in each M-PE to find the hash output of the
SHA-256d2 computation less than the target threshold, which
is used to determine the valid nonce. The detailed presenta-
tion of the NOD is described in Section III-D.

C. PIPELINED DUAL-ALU ARCHITECTURE
The dual-ALU architecture is an iteration structure, requiring
64 or 80 loops to generate the hash output. Consequently, the
dual ALUsmust contain all operators for one loop calculation
of the ME and MC processes. However, a large number of
operators in the dual ALUs can cause a long critical path,
resulting in a significantly limited processing rate. Therefore,
we propose using the pipeline technique for the dual ALU
architecture to reduce the critical path and improve the pro-
cessing rate.

Fig. 8 shows a three-stage pipelined dual ALU architecture.
According to this architecture, both the ME and MC pro-
cesses in the dual ALUs are divided into three-stage pipelines,
where the computational workload of each stage is balanced
to achieve the lowest critical path. Since the adders have the
highest computational cost, the path through the adders is
the critical path in each stage. Therefore, this architecture

FIGURE 9. Nonce generator architecture.

replaces several full adders FAs) and half adders (HAs) with
CSAs to reduce the critical path and hardware resources.
Accordingly, the hardware can be improved to be at least 14%
faster [44] when applying two CSAs to construct an adder of
four operands.

With this architecture, the ith loop calculation is executed
through the three stages. The results of the ith loop calculation
are outputted from the third stage and then fed back to the
first stage to perform the (i + 1)th loop calculation. Thus,
all 64 (at SHA-224/256) or 80 (at SHA-384/512) loops of

VOLUME 10, 2022 11837



H. L. Pham et al.: High-Efficiency FPGA-Based Multimode SHA-2 Accelerator

FIGURE 10. Detailed timing chart of the proposed MSA in (a) generic
application and (b) blockchain mining.

the ME and MC processes can be completed in the dual
ALUs. Note that the shift-register method is applied to the
ME process, so we use only sixteen variablesW0, W1,. . . , and
W15 to compute and update the Wi of the last 48 or 60 loops.
To efficiently use 100% of the hardware resources of the dual
ALUs, three data flows, including messages and hash inputs,
from the sharedM t andH t memories should be used as input
data to the three-stage pipelined dual ALUs. The registers at
three stages (denoted registers 1, 2, and 3) are used to store
enough variables that the three stages can execute three data
flows in parallel. Since all stages are always busy, the dual
ALU architecture achieves 100% hardware efficiency. After
completing the 64 or 80 loops, the three results of the MC
process are added to the three hash inputs (H t ) to generate
three hash outputs (H t+1), which are then stored in the global
H t+1 memory.

D. NONCE GENERATOR AND DETECTOR FOR
BLOCKCHAIN MINING
In blockchain mining, the MSA should scan all possible
instances of 232 32-bit nonce values, equivalent to calculating
232 messages, to find a valid hash smaller than the target.
Since the bandwidth between the DDR memory and the
accelerator is limited, the writing time of the 232 messages

FIGURE 11. Implementation and verification of the proposed MSA on a
Xilinx Alveo U280 FPGA.

and the reading time of the 232 hash outputs is a bottleneck
for the process of finding the nonce. Therefore, this section
presents two mechanisms, NOGs and NODs, to improve the
processing time.

The NOG automatically updates the nonce value inside
the 512-bit messages in the shared M t memory, as shown
in Fig. 9. In each M-PE, the message to the SHA-256d1
computation is performed in ALU1. According to our shared
M t memory organization, transactions T1-T3 are 512-bit
messages to the SHA-256d1 computation in ALU1. Based
on our investigation, the nonce value is located at posi-
tion W3 of the messages to SHA-256d1 in blockchain net-
works. Therefore, the NOG repeatedly updates the W3 value,
where W3 is in bits 384 to 415 inside transactions T1-T3.
So that it is user oriented, the NOG only generates nonce
values between the start nonce and end nonce thresholds.
The NOG will send the stop signal to the execution con-
troller to stop the MSA operation if the generated nonce
exceeds the end nonce threshold. At that time, the fin-
ish flag in the mining memory is valid for the CPU to
check.

The NOD is used to compare the hash output of the
SHA-256d2 computation from ALU2 with the target value,
as shown in Fig. 7. If the hash output is less than the target,
the status flag, 32-bit found nonce and 256-bit hash output
will be written to the mining memory. After that, the NOD
will send the stop signal to the execution controller to stop
the MSA operation and turn on the finish flag in the mining
memory for the CPU to check.

To clarify the impact of the NOG and NOD, we present
a detailed timing chart of the proposed MSA in generic
applications and blockchain mining, as shown in Fig. 10.
In generic applications, the accelerator performance is highly
dependent on the AXI bus bandwidth, as shown in Fig. 10 (a).
Specifically, the accelerator performance is low since the
M-PEs have a long idle time to wait for writing and reading
data. Thanks to the NOG and NOD mechanisms, writing and
reading data between the DDR memory and the MSA are
only performed once during the process of finding the nonce.
Therefore, theM-PEs execute continuously with no idle time,
thereby maximizing the performance for blockchain mining,
as shown in Fig. 10 (b).

11838 VOLUME 10, 2022



H. L. Pham et al.: High-Efficiency FPGA-Based Multimode SHA-2 Accelerator

FIGURE 12. Power and throughput of the seven MSA versions with seven
different processing element array (PEA) dimensions.

IV. VERIFICATION AND EVALUATION
In this part, the proposed architecture is verified, imple-
mented, and evaluated on a Xilinx FPGA Alveo U280
Data Center Accelerator Card (Alveo U280 FPGA), which
is a 16nm FPGA featuring more than 1,300k Look-Up
Tables (LUTs) and 2,600k Flip-flops (FFs). Thanks to the
huge resource of Alveo U280 FPGA, we can evaluate various
MSAversionswith different PEA dimensions to find themost
suitable PEA size. Besides, the FPGA Alveo U280 board has
PCIe Express 3.0, which can speed up the data transfer rate
performance between the CPU and the FPGA-based MSA to
8.0 GT/s (equivalent to 32 GB/s).

A. FPGA-BASED MSA VERIFICATION
In this section, the proposed MSA is implemented and ver-
ified on the Xilinx FPGA Alveo U280 Data Center Accel-
erator Card, as shown in Fig. 11. The experimental devices
are an Alveo U280 FPGA and a host PC with an Intel Xeon
CPUE5-2620v2@2.10GHzwith 94GBRAM.The proposed
MSA is developed on the Alveo U280 FPGA (denoted as
the FPGA-based MSA) and exchanges data with the host PC
via a Xilinx PCI Express DMA (XDMA). To maximize the
transmission bandwidth between the host PC’s DDRmemory
and the FPGA, we use the XDMA with a performance of
8.0 gigatransfers per second (GT/s), which connects to the
MSA via the 512-bit data width AXI bus. In the host PC,
we design embedded software for the FPGA-based MSA
to transmit test data and read the hash outputs. Regarding
debugging, Chipscope ILA is added to the AlveoU280 FPGA
to monitor the MSA signals. After the system-on-chip devel-
opment, the FPGA-based MSA is verified for both generic
applications and blockchain mining.

1) FPGA-BASED MSA VERIFICATION IN GENERIC
APPLICATIONS
This section verifies the accuracy of the proposed MSA for
the SHA-224, SHA-256, SHA-384, and SHA-512 computa-
tions, which are frequently performed in generic applications.
Since the messages in generic applications are usually of an

TABLE 3. Performance comparison between two MSA architectures: MSA
without the NOG and MSA with the NOG.

unknown length and value, the proposedMSA should be veri-
fied for hash computation with different bit sizes andmessage
values. Therefore, the messages are randomly generated with
various bit sizes and values for the FPGA-based MSA to
compute in the SHA-224, SHA-256, SHA-384, and SHA-512
modes. The experiment is conducted with 100,000 random
messages for each mode. For verification, the hashing output
from the globalH t+1 memory of the MSA is compared to the
hashing results computed from the software in the host PC.
The experimental results show that FPGA-based MSA works
100% correctly for the SHA-224, SHA-256, SHA-384, and
SHA-512 computations.

2) FPGA-BASED MSA VERIFICATION IN BLOCKCHAIN
MINING
This section verifies the correctness of the proposed MSA
for the SHA-256d computation, which is used in blockchain
mining. The 1024-bit message to the SHA-256d computa-
tion is obtained from the block headers in the blockchain
network. For the sake of saving hardware resources, the
1024-bit message is computed in both the host PC (con-
sidered software) and FPGA-based MSA (considered hard-
ware). The first 512-bit message to SHA-256d0 is computed
in the host PC. Then, the hashing output of SHA-256d0
and the final 512-bit message to SHA-256d1 are loaded to
the FPGA-based MSA to find a valid 32-bit nonce. In the
blockchain mining mode, the FPGA-based MSA executes
the SHA-256d1 and SHA-256d2 computations until the valid
nonce is found. For verification, the found valid nonce and
hash output from the mining memory of the proposed MSA
are compared with the available results on the website of the
blockchain network. The experiment uses the 1024-bit mes-
sage of block headers from various blockchain networks, such
as Bitcoin, BitcoinCash, Bitcoin Atom, Bitcoin V, BitcoinSV,
FreiCoin, ZetaCoin, DeVault, Deutsche eMark, Embargo-
Coin, Susucoin, FreeCash, and Kryptofranc. The experimen-
tal results show that the FPGA-based MSA operates 100%
correctly in the mining process on many different blockchain
networks.

B. EVALUATING THE IMPACT OF THE PROPOSED
TECHNIQUES INSIDE THE MSA
This section presents the suitable PEA dimension for the
proposed MSA and the impact of the nonce generator for
blockchain mining. Throughout this section, we use the two
quantities of power and throughput for evaluation. The power
consumption is obtained using the Xilinx Power Estimator

VOLUME 10, 2022 11839



H. L. Pham et al.: High-Efficiency FPGA-Based Multimode SHA-2 Accelerator

TABLE 4. Comparison between the proposed dual ALU architecture and related works based on FPGA synthesis results.

tool in Vivado version 2019.2. The throughput, measured
in megahashes per second (Mhps), is calculated by eq. (1),
where #Hash is the number of generated hashes, TWR_MSA
is the time to write data from the DDR memory to the
MSA, TMSA_EXE is the execution time of the MSA, and
S(TWR_MSA,TMSA_EXE) is the total time of the data writing
and MSA execution.

Throughput =
#Hash

S(TWR_MSA,TMSA_EXE)
(1)

Note that the throughput estimation does not consider the
time for reading data from the accelerator to DDR memory
because the data reading process can be performed in parallel
with the execution of the M-PEs, as shown in Fig. 10 (a).

1) SUITABLE PEA DIMENSION FOR THE PROPOSED MSA
The proposed MSA uses multiple M-PEs to accelerate the
SHA-2 computations. Theoretically, increasing the number
of M-PEs (the PEA dimension) may improve the perfor-
mance of the MSA. However, increasing the PEA dimension
will greatly increase the power consumption of the MSA.
Meanwhile, the MSA processing rate will not increase much
because of the bandwidth bottleneck between the DDRmem-
ory and the accelerator. In addition, the large PEA dimension
can make the arbiters and the global H t+1 memory more
complex, which increases the critical path. In contrast, if a
PEA dimension is excessively small, theMSAwill have a low
performance. To find a suitable PEA dimension, this section
evaluates the throughput and power of MSAs with different
PEA dimensions.

In Fig. 12, we present the throughput and power of the
seven MSA versions with seven PEA dimensions: 1 × 1,
2 × 2, 4 × 4, 8 × 4, 8 × 6, 8 × 8, and 8 × 10. Overall, the
throughput and power of the MSA increase with increasing
PEA dimensions. Specifically, the MSAs with 1×1 to 8×10

PEA dimensions consume 0.15 W to 7.34 W, respectively.
For the SHA-224/256 computations, the MSAs with 1× 1 to
8 × 10 PEA dimensions deliver 7.21 Mhps to 103.81 Mhps,
respectively. For the SHA-384/512 computations, the perfor-
mance of the MSAs with 1 × 1 to 8 × 10 PEA dimensions
is 2.93 Mhps to 49.83 Mhps, respectively. On the other hand,
the MSA performance for the SHA256d computation only
increases when the PEA dimension increases from 1 × 1 to
8×8, reaching 3.91Mhps to 250Mhps, respectively. Because
ALU1 and ALU2 of each M-PE compute 64 loops in SHA-
256d mode, using 64 M-PEs (8 × 8 dimensions) will enable
the M-PEs to execute continuously with no idle status. If the
PEA dimension exceeds 64 M-PEs, some of the M-PEs will
stop after executing 64 loops, leading to wasted execution
time. The proof is that the throughput of SHA-256d reaches
the saturation threshold of 250 Mhps with 8 × 10 PEA
dimensions.

Based on the above analysis, the 8 × 8 PEA dimension is
the most suitable for the MSA to maximize the SHA-256d
throughput and improve the SHA-224/256/384/512 through-
put while maintaining reasonable power consumption. There-
fore, the 8 × 8 PEA dimension is selected for the
proposed MSA.

2) THE IMPACT OF THE NONCE GENERATOR (NOG) FOR
BLOCKCHAIN MINING
The above analysis shows that the SHA-256d throughput is
superior to the SHA224/256/384/512 throughput and peaks
at 250 Mhps. The main reason for the excellent SHA256d
throughput is that the NOG and NOD help to reduce the
bandwidth pressure between the DDRmemory and theMSA.
Because this evaluation does not consider the data reading
from the MSA to DDR memory, we only evaluate the NOG.
To clarify the impact of the NOG, this section analyzes the

11840 VOLUME 10, 2022



H. L. Pham et al.: High-Efficiency FPGA-Based Multimode SHA-2 Accelerator

TABLE 5. Comparison of hardware efficiency between the proposed MSA and FPGA-based works.

throughput and power of the MSA with and without the
proposed NOG.

To demonstrate that the NOG can maximize the SHA256d
throughput, we evaluate two versions of the MSA architec-
ture: the MSA without the NOG and the MSA with the NOG.
In this experiment, the two architectures try 232 nonce values
by performing the SHA256d computation of 232 messages.
In the MSA without the NOG, the 232 messages are trans-
mitted from the DDR memory 232 times. However, the MSA
with the NOG receives only one message from the DDR
memory, and the NOGwill update the 232 32-bit nonce values
to generate 232 messages.
Table 3 describes the performance comparison between

the two MSA architectures when performing the SHA256d
computation for 232 messages. Specifically, the MSA with
the NOG is 4.17 times (250 vs. 62.5) better than the MSA
without the NOG in terms of throughput. Additionally, the
MSAwith the NOG is not much better than the MSAwithout
theNOG in terms of power consumption. Therefore, theMSA
with the NOG is approximately 4.17 times (38.05 vs. 9.57)
higher than the MSA without the NOG in terms of energy
efficiency.

Using the NOG, the MSA can achieve the maximum per-
formance for the SHA256d computation. Therefore, the NOG
is integrated into the proposed MSA to achieve 250 Mhps for
blockchain mining.

C. PERFORMANCE EVALUATION
1) EVALUATING THE PROPOSED DUAL ALU ARCHITECTURE
In the proposed MSA, the dual ALUs are the most impor-
tant component to accelerate the computational performance
of SHA-2 functions. On the other hand, most previous

SHA-2 works only focus on optimizing the SHA-2 ALU.
Therefore, this section presents a performance evaluation
between the proposed dual ALU architecture and related
ALU architectures.

For a fair comparison with the existing SHA-2 ALU archi-
tectures such as [11], [27], [28], [45], [46], we have synthe-
sized the proposed dual ALU circuits on two Xilinx Virtex
FPGA boards, including Virtex XCV200-2 FF324 and Vir-
tex 2 XC2VP20-7 FG676. Note that the proposed dual ALU
architecture is discarded the final adders, used for hashing
completion after message expansion and compression pro-
cesses, to be similar to the ALU architectures in [27], [28].
In contrast, the proposed dual ALU architecture is kept intact
for comparison with the related ALU architectures in [11],
[45], [46]. Comparative factors include throughput, area effi-
ciency, and flexibility. During our experiment, we used an
Xilinx ISE version 10.1.

The throughput, measured in megahashes per second
(Mhps), is calculated by eq. (2), where #Hash is the number
of generated hashes per working session, frequency is the
maximum operating frequency obtained from ISE synthesis
results, and #Cycle is the number of clock cycles to generate
#Hash.

Throughput =
#Hash× Frequency

#Cycle
(2)

Then, hardware efficiency is calculated by eq. (3).

Area Efficiency =
Throughput

Area
(3)

Table 4 shows the throughput and area efficiency com-
parisons between the proposed dual ALU architecture and
previous ALU architectures on the Virtex XCV200 and Vir-
tex 2 XC2VP20 boards.

VOLUME 10, 2022 11841



H. L. Pham et al.: High-Efficiency FPGA-Based Multimode SHA-2 Accelerator

FIGURE 13. Comparison of the proposed MSA with a state-of-the-art CPU and GPU: (a) Power, (b) throughput, and (c) energy efficiency comparisons.

On the Virtex XCV200 board, the proposed dual ALU
architecture occupies 3,449 slices, operates at a maximum
frequency of 101 MHz, and reaches 3.156, 1.263, and
1.578 Mhps for SHA256, SHA512, and SHA256d compu-
tations, respectively. In SHA256 mode, the proposed dual
ALU architecture is 2 times (3.156 vs. 1.563) and 1.9 times
(3.156 vs. 1.656) higher than [27] and [28] in throughput,
respectively, and 1.7 times (0.92 vs. 0.53) and 1.4 times
(0.92 vs 0.65) better than [27] and [28] in area efficiency,
respectively. In SHA512 mode, the proposed dual ALU
architecture is 2 times (1.263 vs. 0.625) and 1.5 times
(1.263 vs. 0.828) greater than [27] and [28] in throughput,
respectively, and 1.8 times (0.37 vs. 0.21) and 1.1 times
(0.37 vs 0.33) better than [27] and [28] in area efficiency,
respectively.

On the Virtex 2 XC2VP20 board, the proposed dual
ALU architecture utilizes 3,695 slices, operates at a maxi-
mum frequency of 165 MHz, and delivers 5.077, 2.037, and
2.538 Mhps for SHA256, SHA512, and SHA256d computa-
tions, respectively. In SHA256 mode, the proposed dual ALU
architecture is 40.6 times (5.077 vs. 0.125) and 21.2 times
(5.077 vs. 0.239) higher than [11] and [45] in throughput,
respectively, and 4.7 times (1.37 vs. 0.29) and 6.9 times
(1.37 vs 0.20) better than [11] and [45] in area efficiency,
respectively. In SHA512mode, the proposed dual ALU archi-
tecture is 2.3 times (2.037 vs. 0.901) greater than [46] in
throughput, and 1.3 times (0.55 vs. 0.42) higher than [46] in
area efficiency.

In addition to comparing throughput and area efficiency,
we evaluate the flexibility between the proposed dual ALU
architecture and the previous ALU architectures in [11],
[27], [28], [45], [46]. Particularly, the proposed dual ALU
architecture can be configured by embedded software to
change between many SHA-2 functions (modes) immedi-
ately. Although the ALU architectures in [27], [28] are con-
figurable, those ALUs can only perform SHA-256 and SHA-
512 but SHA256d.Meanwhile, the ALU architectures in [11],
[45], [46] are not configurable and can only execute a single

hash function. Therefore, the proposed dual ALU architecture
has more flexibility than previous ALU architectures.

2) MSA VS. FPGA-BASED WORKS
This section presents a comparison of the throughput, area,
and energy efficiencies between the proposedMSA and state-
of-the-art designs based on the results of the FPGA evalua-
tion, as shown in Table 5. We evaluate them at two levels: the
standalone core and SoC.

At the standalone core level, only the dual ALUs (ALU1
and ALU2) and PE controller of the proposed MSA are
synthesized and evaluated on the Xilinx Alveo U280 FGPA.
The MSA needs 210,880 LUTs and 366,208 flip-flops (FFs),
operates at a maximum frequency of 650 MHz, and con-
sumes 13.63W. The throughput of the proposedMSA reaches
1,280 Mhps, 580 Mhps, and 650 Mhps for the SHA256,
SHA512, and SHA256d computations, respectively. Note
that the throughput of the accelerators in [20] and [36] is
calculated based only on the number of generated hashes
over the execution time inside the computational unit (ALU)
without considering the transmission time between the DDR
memory and the accelerator. For a fair comparison, the
throughput of the proposed MSA is also calculated similarly
to that of the designs in [20] and [36]. In SHA256 mode,
the proposed MSA is 6.46 times (6.07 vs. 0.94) and 8 times
(93.91 vs. 11.74) better than [20] in area and power efficien-
cies, respectively. In SHA512 mode, the proposed MSA is
6.42 times (2.44 vs. 0.38) and 1.46 times (2.44 vs. 1.67)
greater than [20] and [36] in area efficiency, respectively, and
is 7.34 times (37.67 vs. 5.13) better [20] in energy efficiency.

At the SoC level, the full circuit of the proposed
MSA is implemented and evaluated on the Xilinx Alveo
U280 FGPA. The proposedMSAoccupies 285,754 LUTs and
522,944 FFs, operates at 250 MHz, and consumes 6.57 W.
The throughput of the proposed MSA reaches 99.7 Mhps,
47.5 Mhps, and 250 Mhps for SHA256, SHA512, and
SHA256d computations, respectively. Note that the through-
put of the proposed MSA is calculated by eq. (1). Compared

11842 VOLUME 10, 2022



H. L. Pham et al.: High-Efficiency FPGA-Based Multimode SHA-2 Accelerator

with the state-of-the-art works in SHA256 mode, the pro-
posed MSA is 5.83 times (0.35 vs. 0.06) and 1.94 times
(0.35 vs. 0.18) higher than [38] and [47] in area efficiency,
respectively, and is 7.3 times (15.18 vs. 2.08) and 3.99 times
(15.18 vs. 3.8) greater than [38] and [47] in energy effi-
ciency, respectively. In SHA512 mode, the proposed MSA
is 1.31 times (0.17 vs. 0.13) and 1.63 times (7.23 vs. 3.08)
better than [48] in area and energy efficiencies, respectively.

In addition to comparing area and energy efficiencies,
we evaluate the flexibility between the proposed MSA and
the accelerators in [20], [36], [38], [47], and [48]. Specif-
ically, the proposed MSA can be configured by embedded
software to switch between many SHA-2 functions (modes)
instantly. Additionally, the accelerators in [20], [36], [38],
[47], and [48] are fixed hardware for performing only a sin-
gle hash function. Therefore, the proposed MSA has higher
flexibility than state-of-art FPGA-based works.

3) MSA VS. A STATE-OF-THE-ART CPU AND GPU
Since state-of-the-art FPGA-based accelerators have poor
performance and low flexibility, the proposed MSA needs
to be evaluated with other high-performance and flexible
hardware platforms that can execute a large number of
hash computations with various SHA-2 modes. Therefore,
this section evaluates the proposed MSA in comparison
with high-performance hardware platforms, such as CPUs
and GPUs. Concretely, this section compares the power,
throughput, and energy efficiency of the proposed MSA with
the most powerful CPU and GPU when executing SHA-
224/256, SHA-384/512, and SHA-256d in two scenarios:
single-thread (or one activated M-PE of the proposed MSA)
and multithread (or the full sixty-four activated M-PEs of the
proposed MSA).

Fig. 13 (a)-(c) compares the power, throughput, and energy
efficiency of three hardware platforms: the proposed MSA
on the Xilinx Alveo U280 FGPA (FPGA-based MSA), the
Intel i9 10940X CPU, and the RTX 3090 GPU. It should
be noted that each hardware platform consumes a different
amount of static power even without running SHA-2 pro-
grams. Specifically, the static power of the CPU, GPU, and
FPGA-basedMSA is 13, 31, and 10.9W. However, the power
for SHA-2 execution is known as dynamic power. For a
fair comparison, the power consumption considered in this
section is only dynamic power. Fig. 13 (a) shows that the
GPU consumes the most power regardless of the experimen-
tal scenario. Additionally, the CPU consumes approximately
half as much power as the GPU. Regarding the most energy-
efficient platform, the FPGA-based MSA power is at least
9.4 times (30 vs. 3.2) and 36.6 times (117 vs. 3.2) less
than the CPU and GPU power, respectively. In the perfor-
mance comparison, Fig. 13 (b) presents the throughput of
SHA224/256, SHA384/512, and SHA256d performed on the
CPU, GPU, and FPGA-based MSA. When performing the
SHA-2 computations in a single thread, the CPU and GPU
platforms exhibit poor performance, less than 1.7 Mhps.
In the single thread experiment, the FPGA-based MSA deliv-

ers at least 2.9 Mhps, which is significantly better than the
CPU and GPU. For multithread execution, the GPU outper-
forms the CPU and MSA since the GPU has a large number
of cores and threads. Specifically, the GPU performance
peaks at 943 Mhps for SHA-224/256, which is 58.9 times
(943 vs. 16) and 9.5 times (943 vs. 99.7) higher than that
of the CPU and FPGA-based MSA, respectively. Note that
the FPGA-based MSA is less than 1.6 times (250 vs. 411)
less than the GPU in SHA-256d throughput thanks to the
proposed NOG and NOD mechanisms. Despite being infe-
rior in performance to the GPU, the FPGA-based MSA’s
energy efficiency is still better than that of the GPU since
the FPGA-based MSA power is very low compared to the
GPU power. As shown in Fig. 13 (c), the energy efficiency of
the FPGA-based MSA reaches 38.05 Mhps/W for the SHA-
256d computation, which is 543.6 times (38.05 vs. 0.07) and
29 times (38.05 vs. 1.3) higher than that of the CPU andGPU,
respectively.

V. CONCLUSION
The SHA-2 cryptographic functions play an important role
in many applications, from ensuring data security and
integrity in network security to maintaining the distribution
of blockchain networks. Developing hardware architectures
with high performance and flexibility for a wide range of
SHA-2 applications has thus become an attractive research
trend. Unfortunately, it is difficult to achieve state-of-the-
art SHA-2 architectures with high performance and flexibil-
ity with high hardware efficiency. In this study, we solve
the above problems by developing a multimode SHA-2
accelerator (MSA) at the system-on-chip level. Specifi-
cally, the proposed MSA applies several optimization tech-
niques, including multiple multimode processing elements,
dual pipeline ALUs, nonce generators, and nonce detectors,
to achieve this purpose. The proposed MSA is implemented
and verified on the Xilinx Alveo U280 FPGA. With FPGA
Xilinx 16 nm FinFET technology, the proposedMSA reaches
a maximum processing rate of 250Mhps in SHA-256d mode.
The experimental results on the FPGA show that the MSA
not only achieves high performance and hardware efficiency
but also has superior flexibility compared to previous works.
Comparing general hardware platforms such as CPUs and
GPUs, the proposedMSA is significantly better than the Intel
i9-10940X CPU and RTX 3090 GPU in energy efficiency.

Overall, our accelerator supports only the hash functions
of the SHA-2 family. However, data security applications
and blockchain mining require the use of various crypto-
graphic hash algorithms, such as SHA-3, BLAKE, andMD-5.
Therefore, developing high-performance and power-efficient
hardware that can support more hash functions will be our
research direction in the near future.

APPENDIX
The synthesized results on the FPGA, the C code for the
CPU, and the Cuda code for the GPU can be found at
https://github.com/archlab-naist/MSA_Luan/.

VOLUME 10, 2022 11843



H. L. Pham et al.: High-Efficiency FPGA-Based Multimode SHA-2 Accelerator

REFERENCES
[1] Q. H. Dang, ‘‘Secure hash standard,’’ Federal Inf. Process. Standards

Publication, 2015, pp. 180–184.
[2] X. Wang, Y. L. Yin, and H. Yu, ‘‘Finding collisions in the full SHA-

1,’’ in Proc. 25th Annu. Int. Conf. Adv. Cryptol. Berlin, Heidelberg:
Springer-Verlag, 2005, pp. 17–36.

[3] M. J. Dworkin, ‘‘Sha-3 standard: Permutation-based hash and extendable-
output functions,’’ 2015.

[4] H. E. Michail, G. S. Athanasiou, V. Kelefouras, G. Theodoridis, and
C. E. Goutis, ‘‘On the exploitation of a high-throughput SHA-256 FPGA
design for HMAC,’’ ACM Trans. Reconfigurable Technol. Syst., vol. 5,
no. 1, pp. 1–28, Mar. 2012.

[5] M. Juliato and C. Gebotys, ‘‘A quantitative analysis of a novel SEU-
resistant SHA-2 and HMAC architecture for space missions security,’’
IEEE Trans. Aerosp. Electron. Syst., vol. 49, no. 3, pp. 1536–1554,
Jul. 2013.

[6] H. Choi and S. C. Seo, ‘‘Optimization of PBKDF2 using HMAC-SHA2
and HMAC-LSH families in CPU environment,’’ IEEE Access, vol. 9,
pp. 40165–40177, 2021.

[7] W. Shan, W. Dai, C. Zhang, H. Cai, P. Liu, J. Yang, and L. Shi, ‘‘TG-
SPP: A one-transmission-gate short-path padding for wide-voltage-range
resilient circuits in 28-nm CMOS,’’ IEEE J. Solid-State Circuits, vol. 55,
no. 5, pp. 1422–1436, May 2020.

[8] P. Gallagher, ‘‘Digital signature standard (DSS),’’ Federal Inf. Process.
Standards Publications, 2013, pp. 186–193.

[9] A. Coughlin, G. Cusack, J.Wampler, E. Keller, and E.Wustrow, ‘‘Breaking
the trust dependence on third party processes for reconfigurable secure
hardware,’’ in Proc. ACM/SIGDA Int. Symp. Field-Programmable Gate
Arrays, New York, NY, USA, 2019, pp. 282–291.

[10] M. Feldhofer and C. Rechberger, ‘‘A case against currently used hash
functions in RFID protocols,’’ inProc. Int. Conf. MoveMeaningful Internet
Syst., AWeSOMe, CAMS, COMINF, IS, KSinBIT, MIOS-CIAO, MONET.
Berlin, Heidelberg: Springer-Verlag, 2006, pp. 372–381.

[11] R. García, I. Algredo-Badillo, M. Morales-Sandoval, C. Feregrino-Uribe,
and R. Cumplido, ‘‘A compact FPGA-based processor for the secure hash
algorithm SHA-256,’’ Comput. Electr. Eng., vol. 40, no. 1, pp. 194–202,
Jan. 2014.

[12] F. Tschorsch and B. Scheuermann, ‘‘Bitcoin and beyond: A technical
survey on decentralized digital currencies,’’ IEEE Commun. Surveys Tuts.,
vol. 18, no. 3, pp. 2084–2123, 3rd Quart., 2016.

[13] H. Michail, A. Kakarountas, A. Milidonis, and C. Goutis, ‘‘A top-down
design methodology for ultrahigh-performance hashing cores,’’ IEEE
Trans. Dependable Secure Comput., vol. 6, no. 4, pp. 255–268, Oct. 2009.

[14] F. Wang, Y. Chen, R. Wang, A. O. Francis, B. Emmanuel, W. Zheng, and
J. Chen, ‘‘An experimental investigation into the hash functions used in
blockchains,’’ IEEE Trans. Eng. Manag., vol. 67, no. 4, pp. 1404–1424,
Nov. 2020.

[15] A. A. Monrat, O. Schelén, and K. Andersson, ‘‘A survey of blockchain
from the perspectives of applications, challenges, and opportunities,’’ IEEE
Access, vol. 7, pp. 117134–117151, 2019.

[16] W. Wang, D. T. Hoang, P. Hu, Z. Xiong, D. Niyato, P. Wang, Y. Wen, and
D. I. Kim, ‘‘A survey on consensus mechanisms and mining strategy man-
agement in blockchain networks,’’ IEEE Access, vol. 7, pp. 22328–22370,
2019.

[17] T. H. Tran, H. L. Pham, T. D. Phan, and Y. Nakashima, ‘‘BCA: A 530-mW
multicore blockchain accelerator for power-constrained devices in securing
decentralized networks,’’ IEEE Trans. Circuits Syst. I, Reg. Papers, vol. 68,
no. 10, pp. 1–14, Oct. 2021.

[18] K. J. O’Dwyer and D. Malone, ‘‘Bitcoin mining and its energy footprint,’’
in Proc. 25th IET Irish Signals Syst. Conf. China-Ireland Int. Conf. Inf.
Communities Technol. (ISSC/CIICT), 2014, pp. 280–285.

[19] S. Valfells and J. H. Egilsson, ‘‘Minting money with megawatts [point of
view],’’ Proc. IEEE, vol. 104, no. 9, pp. 1674–1678, Sep. 2016.

[20] R. Martino and A. Cilardo, ‘‘A flexible framework for exploring,
evaluating, and comparing SHA-2 designs,’’ IEEE Access, vol. 7,
pp. 72443–72456, 2019.

[21] R. Martino and A. Cilardo, ‘‘Designing a SHA-256 processor for
blockchain-based IoT applications,’’ Internet Things, vol. 11, Sep. 2020,
Art. no. 100254.

[22] R. Chaves, G. Kuzmanov, L. Sousa, and S. Vassiliadis, ‘‘Cost-efficient
SHA hardware accelerators,’’ IEEE Trans. Very Large Scale Integr. (VLSI)
Syst., vol. 16, no. 8, pp. 999–1008, Aug. 2008.

[23] I. Algredo-Badillo, C. Feregrino-Uribe, R. Cumplido, and
M. Morales-Sandoval, ‘‘FPGA-based implementation alternatives
for the inner loop of the secure hash algorithm SHA-256,’’ Microprocess.
Microsyst., vol. 37, no. 6, pp. 750–757, Aug. 2013.

[24] R. P. McEvoy, F. M. Crowe, C. C. Murphy, and W. P. Marnane, ‘‘Optimi-
sation of the SHA-2 family of hash functions on FPGAs,’’ in Proc. IEEE
Comput. Soc. Annu. Symp. Emerg. VLSI Technol. Arch. (ISVLSI), 2006,
pp. 317–322.

[25] H. E. Michail, G. S. Athanasiou, G. Theodoridis, and C. E. Goutis, ‘‘On the
development of high-throughput and area-efficient multi-mode crypto-
graphic hash designs in FPGAs,’’ Integration, vol. 47, no. 4, pp. 387–407,
Sep. 2014.

[26] R. Ramanarayanan, S. Mathew, F. Sheikh, S. Srinivasan, A. Agarwal,
S. Hsu, H. Kaul, M. Anders, V. Erraguntla, and R. Krishnamurthy,
‘‘18 Gbps, 50 mW reconfigurable multi-mode SHA hashing accelerator
in 45 nm CMOS,’’ in Proc. ESSCIRC, Sep. 2010, pp. 210–213.

[27] R. Glabb, L. Imbert, G. Jullien, A. Tisserand, and N. Veyrat-Charvillon,
‘‘Multi-mode operator for SHA-2 hash functions,’’ J. Syst. Archit., vol. 53,
nos. 2–3, pp. 127–138, Feb. 2007.

[28] A. Hodjat, P. Schaumont, and I. Verbauwhede, ‘‘Architectural design
features of a programmable high throughput AES coprocessor,’’
in Proc. Int. Conf. Inf. Technol., Coding Comput. (ITCC), 2004,
pp. 498–502.

[29] N. Sklavos and O. Koufopavlou, ‘‘Implementation of the SHA-2 hash fam-
ily standard using FPGAs,’’ J. Supercomput., vol. 31, no. 3, pp. 227–248,
Mar. 2005.

[30] W. Sun, H. Guo, H. He, and Z. Dai, ‘‘Design and optimized implementation
of the SHA-2(256, 384, 512) hash algorithms,’’ in Proc. 7th Int. Conf.
ASIC, Oct. 2007, pp. 858–861.

[31] L. V. T. Duong, N. T. T. Thuy, and L. D. Khai, ‘‘A fast approach for
bitcoin blockchain cryptocurrency mining system,’’ Integration, vol. 74,
pp. 107–114, Sep. 2020.

[32] V. Suresh, S. Satpathy, and S. Mathew, ‘‘Bitcoin mining hardware accel-
erator with optimized message digest and message scheduler datapath,’’
U.S. Patent 15 274 200, Mar. 29, 2018.

[33] V. B. Suresh, S. K. Satpathy, and S. K. Mathew, ‘‘Optimized SHA-
256 datapath for energy-efficient high-performance Bitcoin mining,’’
U.S. Patent 10 142 098, Nov. 27, 2018.

[34] V. B. Suresh, S. K. Satpathy, and S. K. Mathew, ‘‘Energy-efficient
bitcoin mining hardware accelerators,’’ U.S. Patent 10 313 108,
Jun. 4, 2019.

[35] H. L. Pham, T. H. Tran, T. D. Phan, V. T. Duong Le, D. K. Lam,
and Y. Nakashima, ‘‘Double SHA-256 hardware architecture with com-
pact message expander for bitcoin mining,’’ IEEE Access, vol. 8,
pp. 139634–139646, 2020.

[36] Y. Zhang, Z. He, M. Wan, M. Zhan, M. Zhang, K. Peng, M. Song, and
H. Gu, ‘‘A new message expansion structure for full pipeline SHA-2,’’
IEEE Trans. Circuits Syst. I, Reg. Papers, vol. 68, no. 4, pp. 1553–1566,
Apr. 2021.

[37] V. D. Phan, H. L. Pham, T. H. Tran, and Y. Nakashima, ‘‘High performance
multicore SHA-256 accelerator using fully parallel computation and local
memory,’’ in Proc. IEEE Symp. Low-Power High-Speed Chips (COOL
CHIPS), Apr. 2021, pp. 1–3.

[38] T. H. Tran, H. L. Pham, and Y. Nakashima, ‘‘A high-performance
multimem SHA-256 accelerator for society 5.0,’’ IEEE Access, vol. 9,
pp. 39182–39192, 2021.

[39] R. Martino and A. Cilardo, ‘‘SHA-2 acceleration meeting the needs
of emerging applications: A comparative survey,’’ IEEE Access, vol. 8,
pp. 28415–28436, 2020.

[40] I. Ahmad and A. Shoba Das, ‘‘Hardware implementation analysis of SHA-
256 and SHA-512 algorithms on FPGAs,’’ Comput. Electr. Eng., vol. 31,
no. 6, pp. 345–360, Sep. 2005.

[41] M. Rahouti, K. Xiong, and N. Ghani, ‘‘Bitcoin concepts, threats,
and machine-learning security solutions,’’ IEEE Access, vol. 6,
pp. 67189–67205, 2018.

[42] J. Taskinsoy, ‘‘Bitcoin and Turkey: A goodmatch or a perfect storm,’’ SSRN
Electron. J., Oct. 2019, doi: 10.2139/ssrn.3477849.

[43] Y. Joo and N. McKeown, ‘‘Doubling memory bandwidth for network
buffers,’’ in Proc. IEEE INFOCOM, vol. 2, 1998, pp. 808–815.

[44] T. Kim, W. Jao, and S. Tjiang, ‘‘Circuit optimization using carry-save-
adder cells,’’ IEEE Trans. Comput.-Aided Design Integr. Circuits Syst.,
vol. 17, no. 10, pp. 974–984, Oct. 1998.

[45] M. Kim, D. G. Lee, and J. Ryou, ‘‘Compact and unified hard-
ware architecture for SHA-1 and SHA-256 of trusted mobile com-
puting,’’ Pers. Ubiquitous Comput., vol. 17, no. 5, pp. 921–932,
Jun. 2013.

[46] G. S. Athanasiou, C. E. Goutis, G. Theodoridis, and H. E. Michail,
‘‘Optimising the SHA-512 cryptographic hash function on FPGAs,’’ IET
Comput. Digit. Techn., vol. 8, no. 2, pp. 70–82, 2014.

11844 VOLUME 10, 2022

http://dx.doi.org/10.2139/ssrn.3477849


H. L. Pham et al.: High-Efficiency FPGA-Based Multimode SHA-2 Accelerator

[47] M. Kammoun, M. Elleuchi, M. Abid, and A. M. Obeid, ‘‘HW/SW archi-
tecture exploration for an efficient implementation of the secure hash
algorithm SHA-256,’’ J. Commun. Softw. Syst., vol. 17, no. 2, pp. 87–96,
2021.

[48] A. Al Khas and I. Cicek, ‘‘SHA-512 based wireless authentication scheme
for smart battery management systems,’’ in Proc. 8th Int. Conf. Renew.
Energy Res. Appl. (ICRERA), Nov. 2019, pp. 968–972.

HOAI LUAN PHAM (Graduate Student Member,
IEEE) received the bachelor’s degree in computer
engineering from Vietnam National University
Ho Chi Minh City (VNUHCM)—University of
Information Technology, Vietnam, in 2018, and
the M.S. degree in information science from
the Nara Institute of Science and Technology
(NAIST), Japan, in 2020, where he is currently
pursuing the Ph.D. degree. His research interests
include blockchain technology and cryptography.

THI HONG TRAN (Member, IEEE) received
the bachelor’s degree in physics and the mas-
ter’s degree in microelectronics from Vietnam
National University Ho Chi Minh City
(VNU-HCM)—University of Science, Vietnam,
in 2008 and 2012, respectively, and the Ph.D.
degree in information science from the Kyushu
Institute of Technology, Japan, in 2014. From
January 2015 to September 2021, she has been
with the Nara Institute of Science and Technology

(NAIST), Japan, as a full-time Assistant Professor. Since October 2021,
she has been with Osaka City University, Japan, as a full-time Lecturer,
and NAIST as a Visiting Associate Professor. Her research interests include
digital hardware circuit design, algorithms related to wireless communica-
tion, communication security, blockchain technology, SHA-2, SHA-3, and
cryptography. She is a Regular Member of IEEE, IEICE, and REV-JEC.

VU TRUNG DUONG LE (Graduate StudentMem-
ber, IEEE) received the B.E. degree in IC and hard-
ware design from Vietnam National University
Ho Chi Minh City (VNUHCM)—University of
Information Technology, in 2020. He is currently
pursuing the M.S. degree with the Nara Institute
of Science and Technology (NAIST), Japan. His
research interests include blockchain technology
and cryptography.

YASUHIKO NAKASHIMA (Senior Member,
IEEE) received the B.E., M.E., and Ph.D. degrees
in computer engineering from Kyoto University,
in 1986, 1988, and 1998, respectively. He was
a Computer Architect with the Computer and
System Architecture Department, Fujitsu Ltd.,
from 1988 to 1999. From 1999 to 2005, he was an
Associate Professor with the Graduate School of
Economics, Kyoto University. Since 2006, he has
been a Professor with the Graduate School of

Information Science, Nara Institute of Science and Technology. His research
interests include computer architecture, emulation, circuit design, and accel-
erators. He is a fellow of IEICE, a Senior Member of IPSJ, and a member of
the IEEE CS and ACM.

VOLUME 10, 2022 11845



Received November 11, 2021, accepted November 24, 2021, date of publication November 30, 2021,
date of current version December 29, 2021.

Digital Object Identifier 10.1109/ACCESS.2021.3131558

MRSA: A High-Efficiency Multi ROMix Scrypt
Accelerator for Cryptocurrency
Mining and Data Security
VU TRUNG DUONG LE 1, (Graduate Student Member, IEEE),
THI HONG TRAN 2, (Member, IEEE),
HOAI LUAN PHAM 1, (Graduate Student Member, IEEE),
DUC KHAI LAM3, AND YASUHIKO NAKASHIMA 1, (Senior Member, IEEE)
1Graduate School of Information Science, Nara Institute of Science and Technology (NAIST), Ikoma, Nara 630-0192, Japan
2Graduate School of Engineering, Osaka City University, Osaka 558-8585, Japan
3Computer Engineering Department, University of Information Technology, Vietnam National University, Ho Chi Minh City 700000, Vietnam

Corresponding author: Thi Hong Tran (hong@osaka-cu.ac.jp)

This work was supported by the Japan Science and Technology Agency (JST) under a Strategic Basic Research Programs PRESTO
(Precursory Research for Embryonic Science and Technology), Grant number JPMJPR20M6.

ABSTRACT The development of low-energy, high-performance hardware for cryptocurrency mining is
gaining widespread attention. The mining process for proof-of-work (PoW) in conventional cryptocurren-
cies’ blockchains is increasingly being replaced by application-specific integrated circuits (ASICs). This
leads to many security threats for the blockchain network because it decreases security and increases
power consumption for mining. Therefore, Scrypt, the most representative ASIC-resistant algorithm, was
developed to solve this problem. However, there are still some problems and challenges with the current
Scrypt hardware. This article presents a new hardware architecture for the Scrypt algorithm intended for
a PoW-based cryptocurrency mining system. The proposed Multi ROMix Scrypt Accelerator (MRSA)
hardware architecture applies several optimization techniques: configuration, local-memory computing with
high-performance pipelined Multi ROMix and rescheduling resources to significantly increase processing
speed, flexibility, and energy efficiency. For evaluation, the MRSA is implemented on field-programmable
gate arrays (FPGAs) to examine its actual performance, consumption, and correctness. Evaluation results on
a Xilinx system-on-chip (SoC) with the ALVEO U280 Data Center Accelerator Card FPGA show that the
MRSA is much more power-efficient than some of the most powerful commercial CPUs, GPUs, and other
FPGA implementations. On the ALVEOU280, theMRSA achieves a maximum hash rate of 296.76 kHash/s,
a throughput of 304.9Mbps when reaching a maximum frequency of 259.94MHz, and a power consumption
of 18.12 W. The energy efficiency of the MRSA on the ALVEO U280 SoC is 52.83 and 867.88 times higher
than those on an RTX 3090 GPU and an i9-10940X CPU, respectively.

INDEX TERMS Blockchain, Scrypt, accelerator, FPGA, SoC, ASIC, cryptocurrency, ASIC-resistant,
cryptography hash function, proof-of-work, Litecoin.

I. INTRODUCTION
Recently, cryptocurrency has been a topic of interest. A cryp-
tocurrency is a monetary network that uses blockchain tech-
nology as a consensus mechanism among users [1], [2]. In a
blockchain network, transactions are grouped into lists con-
tained within blocks. The blocks are linked together through

The associate editor coordinating the review of this manuscript and

approving it for publication was Yue Zhang .

the hash of the previous block, thus forming a blockchain.
The blockchain is synchronized among the nodes in the
network, ensuring that no data in the blockchain can be
changed. To ensure authenticity, transactions require digi-
tal signatures from users [3], [4]. In addition, cryptocur-
rencies have mechanisms to solve other security problems,
such as the possible occurrence of double spending when
multiple transactions are performed simultaneously [5]–[8]
or a fork occurring when multiple longest blockchains

VOLUME 9, 2021 This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/ 168383

https://orcid.org/0000-0002-0438-3809
https://orcid.org/0000-0002-2744-0079
https://orcid.org/0000-0002-4272-0132
https://orcid.org/0000-0002-9457-5061
https://orcid.org/0000-0003-0017-1398


V. T. D. Le et al.: MRSA: High-Efficiency Multi ROMix Scrypt Accelerator for Cryptocurrency Mining and Data Security

exist [9], [10]. The consensus mechanism is one of the most
important tools that a cryptocurrency uses to ensure consis-
tency and integrity. There are many types of consensus mech-
anisms, such as proof-of-work (PoW), proof-of-stake (PoS),
proof-of-authority (PoA), and several other types presented
in [11], [12], and [13]. Among them, PoW is the most popu-
lar and is used by the largest cryptocurrency, Bitcoin [14].

In PoW, the miners obtain input data from the last block
combined with finding a valid random nonce number such
that the output hash value is less than the target value
specified by the system. The new block is accepted and
saved to the system permanently, and all transactions inside
it are executed when the nonce is valid. However, finding
a new block consumes a significant amount of computa-
tional resources, which is one of the biggest problems with
PoW-based blockchains. It has been reported that the total
energy consumption of the Bitcoin network in 2020 reached
109.07 TWh, which is approximately equal to the total
energy consumption associated with electricity use in the
Netherlands. Therefore, research and development on high-
performance and low-power hardware for cryptocurrency
mining systems have become a research trend in recent
years [15], [16].

Many studies have presented hardware architectures to
improve computational efficiency and reduce power con-
sumption for Bitcoin mining, which uses double SHA-256
encoding. The authors of [17] introduced a high-performance
multimem SHA-256 accelerator to greatly increase the
speed of the hardware and reported its realization and test-
ing on a ZCU102 field-programmable gate array (FPGA).
With the proposal of a compact message expander hard-
ware architecture for the double SHA-256 core in [18],
the authors reduced the demand for hardware computing
resources without affecting the processing speed. In addi-
tion, the authors of [19] proposed a two-level fully pipelined
SHA-256 core with a hash rate equal to the operating fre-
quency. By eliminating the finite state machine, shortening
the critical path, and balancing the pipeline stages, their
design achieves very high performance and low energy
consumption.

PoW systems using double SHA-256, with immutability,
simple computational components, and low memory require-
ments, offer enormous advantages when implemented on an
application-specific integrated circuit (ASIC) hardware plat-
form. Double SHA-256 miners on ASIC platforms achieve
mining speeds far superior to those on other platforms such as
FPGAs, GPUs, and CPUs. However, ASIC miners consume
energy, and the market price is quite high, leading to the
hardware power in a network being concentrated only in
ASIC mining farms. Such centralization seriously threatens
the safety of the network, increases mining energy consump-
tion, and goes against the original purpose of PoW [15].
Hence, ASIC-resistant algorithms were created to solve these
problems. They have several characteristic properties: they
are highly serial, memory-intensive, and parameterizable.

The highly serial and memory-intensive nature of these algo-
rithms means that they require a high number of loops,
complex dependencies among loops, and considerable mem-
ory, thereby decreasing performance and increasing man-
ufacturing costs for ASICs. Meanwhile, parameterizability
allows the parameters of such an algorithm to be modified
as needed to make current ASICs obsolete and unusable.
ASIC-resistant algorithms eliminate the advantages of ASICs
because they require hardware resources with high flexibil-
ity, significantly reducing computational performance and
leading to high risk when using ASIC miners [20], [21].
On the other hand, FPGA-based miners are flexible, energy-
efficient, and resource-rich computing tools with a reasonable
cost. Therefore, we believe that FPGAs are truly the most
suitable and efficient hardware platforms for ASIC-resistant
cryptocurrencies. Scrypt is one of the most representative
ASIC-resistant algorithms used in today’s PoW-based cryp-
tocurrencies, of which the most popular are Litecoin [22],
Dogecoin [23], Fastcoin [24], and Megacoin [25], among
many others [26]. Several real-world studies and hard-
ware improvements to the Scrypt mining system have been
reported. The authors of [27] built a hardware implementation
for an Scrypt miner with a double ROMix core pipeline tech-
nique and reused resources to increase computation speed
and reduce hardware cost. However, the reuse of hardware
has not been completely optimized, a detailed review of
its implications for power consumption is lacking, and this
approach has not been implemented and verified in practice
on a real FPGA system-on-chip (SoC).

In this paper, we propose a high-performance hardware
architecture for Scrypt by assessing computation time, hard-
ware cost, and power consumption. Furthermore, this is
the first hardware implementation for Scrypt miners on a
Xilinx SoC. This hardware architecture is called the Multi
ROMix Scrypt Accelerator (MRSA). With its proposed con-
figurability feature, the MRSA can also operate under many
parameters and modes to adapt when the mining system
parameters change or be applied in many other Scrypt
applications. The MRSA uses multiple ROMix processing
elements (ROMix PEs) in a cyclic pipeline to increase pro-
cessing efficiency and minimize the hardware idle time. With
near-memory computing, these pipelined ROMix PEs can
access the memory separately and in parallel. This signif-
icantly reduces the time needed for data transfer between
the accelerator and the external memory. Finally, we analyze
the algorithm and apply rescheduling and rearranging tech-
niques to reduce the total hardware computation power and
resources.

The remainder of this paper is presented as follows.
Section II provides the background for this study. Section III
presents the details of the proposed research contributions.
A comparative evaluation of the proposed design imple-
mented on a Xilinx FPGASoCwith other hardware platforms
and studies is presented in Section IV. Finally, Section V
concludes the paper.

168384 VOLUME 9, 2021



V. T. D. Le et al.: MRSA: High-Efficiency Multi ROMix Scrypt Accelerator for Cryptocurrency Mining and Data Security

FIGURE 1. Scrypt proof-of-work (PoW) mining system architecture.

II. BACKGROUND
A. PROOF-OF-WORK
PoW is the most popular and secure consensus mechanism
used in the oldest and most stable cryptocurrencies, such
as Bitcoin, Ethereum, and Litecoin. It trades off hardware
power to ensure the security of the blockchain network. Fig. 1
shows a diagram of a PoW mining system. In this system,
miners choose pending transactions and gather them into a
candidate block. Then, the miners use their computational
power to find the proof necessary to add the candidate block
to the blockchain network. This proof is a randomnonce value
such that the mining result is lower than the required target.
In PoW-based cryptocurrencies, a block consists of two main
fields: the block header and transactions. The transactions
field is the list of executed transactions saved in the block.
The remaining field is the block header, which comprises six
fields, as described in Table 1, serving as the input for the
mining process.

The main processing component in the mining system is
the mining algorithm. The mining algorithm considered in
this study is Scrypt. It returns a 256-bit hash string calculated
from the block header input. Increasing the block header’s
nonce value allows miners to change the hash output to find
a valid nonce. The comparator module compares the Scrypt
hash against the target value. The new block and nonce are
considered valid only if the Scrypt hash is lower than the tar-
get value. Then, theywill be broadcast through the blockchain
network for the other miners to verify. Subsequently, the
new block is permanently added to the blockchain network.
Additionally, the miner who mined that block will automati-
cally receive a reward from the system and all fees from the
transactions in the new block. However, if a valid result is
not found, the miner must change the nonce and recalculate
until the Scrypt result is accepted. Essentially, the current
ASIC-resistant mining process is not fully effective because
it is performed by general hardware platforms such as CPUs
and GPUs, which generally have low performance and high
energy consumption.

B. SCRYPT
Introduced by Percival and Josefsson in [28], the Scrypt
algorithm is a password-based key derivation and a sequential

TABLE 1. Fields of the block header.

Algorithm 1 Out = Scrypt (Blockheader)
Scrypt variables and parameters
for cryptocurrency mining:

Block header (B_header) (1024 bits)
Block size factor (r) = 1
Parallelization parameter (p) = 1
CPU/memory cost parameter (N) = 1024
Length of DerivedKey in bits (dklen) = 256

Steps of the algorithm:
1: P1 = PBKDF2(B_header, B_header, 1024 × r × p)
2: P1 = LittleEndian32(P1)
3: RM_out = ROMix(P1, N, r)
4: RM_out = LittleEndian32(RM_out)
5: Scrypt_out = PBKDF2(B_header, RM_out, dklen)
6: Scrypt_out = LittleEndian32(Scrypt_out)
7: return Scrypt_out

memory-hard function created to defend against attacks
from custom hardware such as ASICs. Algorithm 1 explains
the details of the Scrypt algorithm. Accordingly, several
parameters are used to modify the algorithm depending on
its intended use. They are the block size factor (r), the
CPU/memory cost parameter (N), the parallelization param-
eter (p), and the derived key length in bits (dklen). These
parameters determine how much memory and computational
power are used and how many iterations are performed
in the subfunctions. In most current cryptocurrency min-
ing systems, the parameter set (r, N, p, dklen) used in the
Scrypt algorithm is (1, 1024, 1, 256) [29]. Overall, this algo-
rithm includes two main functions, PBKDF2 and ROMix,
and is divided into three steps. The first step is to process
the PBKDF2 function with input parameters (message, salt,
dklen) of (B_header, B_header, (1024 × r × p)). The second
step is to run the ROMix function with the input parameters
(Block, N, r) set to (P1, N, r). The final step is to execute the
PBKDF2 function again with the input parameters (message,
salt, dklen) set to (B_header, RM_out, dklen). The LittleEn-
dian32 function converts each 32-bit segment, separately and
in parallel, into the little-endian format [30]. The remainder of
this subsection explains the PBKDF2 and ROMix functions
in detail.

1) PBKDF2
The Password-Based Key Derivation Function 2

(PBKDF2) is one of the key derivation functions used to

VOLUME 9, 2021 168385



V. T. D. Le et al.: MRSA: High-Efficiency Multi ROMix Scrypt Accelerator for Cryptocurrency Mining and Data Security

Algorithm 2 DK = PBKDF2(Message, Salt, Dklen)
1: DK = ‘‘’’
2: for i← 1 to (dklen/256) do

DKi = HMAC(message, {salt, i})
HMAC:

3: IPAD = 36363636 . . . 3616 (256 bits)
4: OPAD = 5C5C5C5C . . . 5C16 (256 bits)
5: KHASH = SHA256(message)
6: IXOR = {(KHASH ⊕ IPAD), IPAD}
7: OXOR = {(KHASH ⊕ OPAD), OPAD}
8: IHASH = SHA256({IXOR, salt, i})
9: OHASH = SHA256({OXOR, IHASH})

10: DKi = OHASH
11: DK = {DK, DKi}
12: end for
13: return DK

reduce vulnerabilities to brute force attacks with a sliding
computational cost. In the Scrypt algorithm, PBKDF2 uses
the Hash-based Message Authentication Code (HMAC) to
input the message along with a salt value to produce a derived
key [31]. HMAC is a message authentication code (MAC)
that uses a cryptographic hash function and a secret cryp-
tographic key [32], [33]. It is used to verify data integrity,
to authenticate messages, and in many other cryptographic
applications [34], [35]. Algorithm 2 presents more details of
the PBKDF2 function, where {a, b} denotes the concatena-
tion of a and b and ⊕ is the exclusive OR (Xor) operator.
Accordingly, PBKDF2 includes dklen/256 loops of HMAC
functions. In Scrypt with the current mining parameters (r, N,
p, dklen) = (1, 1024, 1, 256), there are four HMAC loops in
PBKDF2 in the first step because the input parameter dklen
is 1024 × r × p. In the third step of the Scrypt algorithm,
the PBKDF2 function performs HMAC only once because
dklen is 256 (refer to Algorithm 1 to see the second PBKDF2
call). Finally, the output of PBKDF2 is the concatenation of
the results of all HMAC loops.

HMAC uses SHA-256 as its cryptographic hash func-
tion, combined with some Xor and concatenation operations.
SHA-256 is a cryptographic hash function in the Secure Hash
Algorithm 2 family (SHA-2) created by the United States
National Security Agency [36]. It is one of the most popu-
lar hashing algorithms and is widely used in cryptography
and cybersecurity applications. Accordingly, the SHA-256
hash values create the linkages in the blockchain. This hash
algorithm is used in most current cryptocurrencies and is the
primitive PoW algorithm applied in Bitcoin.

SHA-256 includes three steps: padding, message expan-
sion, and message compression. In the padding step, the
message is divided into multiple 512-bit data blocks. The
last block of the message is padded with a string of zeros as
necessary, and the message length is expressed in bits. For
each data block and the previous hash (or initial constants),
message expansion and message compression are performed
to compute an intermediate 256-bit hash. The hash result
of the final block (final digest) is the hash value of the

Algorithm 3 RM_Out = ROMix(Block, N, r)
1: for i← 0 to (N-1) do

Writing to memory:
2: Memi = Block
3: Block = BlockMix(Block, r)
4: end for
5: for j← 0 to (N-1) do

Reading from memory:
6: j = Block[489:480]
7: Block = BlockMix(Block ⊕Memj, r)
8: end for
9: return RM_out = Block

Algorithm 4 BM_Out = BlockMix(Block, r)
1: X = Block[1023:512] (block’s 512 high bits)
2: for i← 0 to ((2 × r) − 1) do
3: X = X ⊕ Block[511:0] (block’s 512 low bits)
4: X = X + Salsa20/8(X)
5: if (i == 0) then
6: OutH = X
7: else
8: OutL = X
9: end if

10: end for
11: return BM_out = OutH, OutL

entire message. The reader is referred to [17]–[19] for a
better understanding of SHA-256. In PBKDF2, SHA-256
is the most complex process that must be considered when
optimizing the hardware.

2) ROMix
ROMix is a sequential memory-hard function that Scrypt
uses to interact with the (N × 128 × r)-byte memory. The
details of the ROMix algorithm are presented in Algorithm 3.
It consists of two main phases: the writing-to-memory phase
and the reading-from-memory phase. Each phase includes
N-1 loops of writing data to or reading data from memory.
In current Scrypt mining systems, the number of loops in
each writing and reading phase is 1024 (N = 1024, r = 1).
In the writing phase, the writing values are handled by the
BlockMix function and saved to memory in ascending order
of address. Then, the Xor operation is performed on the stored
value and the previous BlockMix calculation to decide the
random order for the reading phase. More specifically, the
random address to be read is determined from the 489th to
480th bits of the block data (Block[489:480]), as described
in step 6 of Algorithm 3. If the parameter N is 1024 and
the parameter r is 1, then the required memory for each
ROMix execution is 128 kB. This is why Scrypt is a memory-
intensive algorithm that is suitable for GPUs, CPUs, and
FPGAs but not ASICs. Overall, the ROMix function, the
second step of the Scrypt algorithm, is the most complex
and hardware-demanding process. It occupies 98 percent of

168386 VOLUME 9, 2021



V. T. D. Le et al.: MRSA: High-Efficiency Multi ROMix Scrypt Accelerator for Cryptocurrency Mining and Data Security

the total Scrypt execution time because of the many memory
writing and reading loops. Therefore, we propose the Multi
ROMix architecture with themain purpose of accelerating the
ROMix process.

3) BlockMix
ROMix uses the BlockMix function to mix data for the writ-
ing and reading phases. Algorithm 4 shows the pseudocode
for the BlockMix function. It consists of 2 × r − 1 process-
ing loops. In current mining systems, the number of loops
is two because the block size factor parameter (r) is one.
Accordingly, each loop includes one Xor operation, one sum
operation, and one Salsa20/8 process.

Salsa20/8 is the main process that the BlockMix function
uses to mix the input data. It is an original cipher developed
by Daniel J. Bernstein in 2005 [37]. Salsa20/8 is a hash
function whose input consists of a set of sixteen 32-bit strings
in little-endian format [30]. Specifically, it consists of four
column rounds (CRs) and four row rounds (RRs) performed
alternately. The final BlockMix result is a set of sixteen 32-bit
strings, the same width as its input. Both the CRs and RRs
refer to a smaller loop called a quarter round (QR). The
reader is referred to [27] for more details about the Salsa20/8
algorithm.

Overall, Salsa20/8 is the most complex process in the
ROMix function. It has the longest critical path when imple-
mented in hardware, similar to the SHA-256 process in the
PBKDF2 function. Hence, it is also necessary to improve the
Salsa20/8 process to accelerate the entire Scrypt hardware
implementation.

C. PRELIMINARY IDEA AND MOTIVATION FOR THE
HIGH-PERFORMANCE MULTI ROMix SCRYPT
ACCELERATOR
In general, Scrypt has several characteristics that make it
suitable for implementation on FPGAs. First, Scrypt uses
only low-computational-cost operators such as And, Xor,
right shifting/rotation, and addition. There are no complex
operators such as multiplication, division, or exponentiation.
Second, the number of loops and the number of operands
in each loop are both very high, mainly concentrated in the
SHA-256 and Salsa20/8 calculations. Third, the dependency
between loops in the Scrypt algorithm is very high. To be
more specific, in the ROMix function, the reading order
in the reading-from-memory phase is entirely dependent on
the value previously written to the memory in the writing
phase. On the other hand, the PBKDF2 processes in Scrypt
include multiple SHA-256 calculations. These calculations
also have a high dependency between loops, as analyzed
in [17]. Fourth, the ROMix process has enormous memory
requirements because of themanywriting and reading loops it
comprises. After the writing phase, the memory must be kept
intact for the reading phase. Fifth, Scrypt has several param-
eters that the system can modify to change the number of
loops and the amount of memory required for computational
functions. This helps the blockchain-based PoW mechanism

be more flexible to reduce the high risks posed by ASIC
miners.

Scrypt is an ASIC-resistant memory-intensive algorithm
with high loop dependency, as seen from its second, third, and
fourth characteristics described above. This greatly reduces
the advantage of ASICs over flexible hardware platforms
such as CPUs, GPUs, and FPGAs. However, the performance
of ASIC miners is still extremely outstanding than other
hardware platforms. For example, the ASIC-based Bitmain
Antminer L7 scheduled for November 2021 offers a hash rate
of 9.5 GHash/s at 3425 W [38]. Despite the great advantage
in performance, ASIC miners have several limitations as
follows. First, ASIC miners will be at high risk of being
useless and obsolete if the blockchain network changes the
parameters for the mining process. This is because current
commercial ASIC miners are all designed to work with fixed
parameters for the best mining performance. Second, com-
mercial ASIC miners are designed solely for blockchain min-
ing in ultra-high performance, which throws off the balance
of mining power between ASIC miners and individual user
miners (e.g. CPU, GPU, and FPGA miners). Accordingly,
mining farms with a concentration of many ASIC miners can
easily control the entire blockchain network based on their
computing power [39], [40]. Third, Scrypt was created not
only for blockchain mining but also for data security applica-
tions. Meanwhile, the current commercial Scrypt ASICs are
designed with fixed parameters for only blockchain mining
and are unable to use for other security applications. As a
result, the ASICs are low flexible and unsuitable for individ-
ual users who ensure the decentralization of the blockchain
network and still have their data security demands.

Hardware platforms intended for general purposes, such as
CPUs and GPUs, have considerable memory resources and
numerous computation instructions. They are suitable and
currently popular for implementing Scrypt in many applica-
tions. However, they tend to exhibit very poor performance
because of the high loop dependency and high simple oper-
ator loop requirements, as mentioned in the first, second,
and third Scrypt characteristics. Applications run on CPUs
and GPUs, called software, can execute only one instruction
at a time, separately and sequentially, as stipulated by their
architectures and compiler mechanisms. The greater the
number of loops to be executed is, the lower the perfor-
mance on CPUs and GPUs. Furthermore, CPUs and GPUs
have extremely high energy consumption because they need
to operate their extremely complex computing architectures.
This drawback is more evident when they need to run in mul-
ticore andmultithreadmodes to achieve the best performance.

We believe that with their high computational and mem-
ory resources, reprogrammable hardware design, low power
consumption, and high optimization for parallel pipeline pro-
cesses, FPGAs are well suited for Scrypt implementation.
There are several high-performance architectures that can
be applied on FPGAs to reduce the memory access time,
such as the systolic-array-based accelerator called EMAXVR
[41], [42] used in near-memory computing. However, despite

VOLUME 9, 2021 168387



V. T. D. Le et al.: MRSA: High-Efficiency Multi ROMix Scrypt Accelerator for Cryptocurrency Mining and Data Security

FIGURE 2. The MRSA hardware architecture.

exhibiting high performance in machine learning and image
processing applications, they can achieve only poor per-
formance when performing low-cost operator hash func-
tions [43]. Therefore, it is necessary to develop a specific
hardware architecture to optimize the performance of Scrypt
on FPGAs.

Based on our understanding of Scrypt’s characteristics
along with the current difficulties of other hardware plat-
forms, we propose theMRSA hardware architecture. Because
Scrypt can make existing hardware useless and obsolete for
performing the mining task or other security applications
if the Scrypt parameters are changed, in accordance with
the fifth Scrypt characteristic, we propose a configurabil-
ity function for the MRSA to solve this problem. By this
means, the MRSA allows its parameters to be configured
to be compatible with many applications or parameterizable
mining systems. In addition, Scrypt has high loop dependency
and requires an enormous amount of memory for the ROMix
process, in accordance with the third and fourth Scrypt char-
acteristics. This significantly decreases the Scrypt hashing
performance. Therefore, the proposed Multi ROMix archi-
tecture is applied in the MRSA to overcome this challenge.
In this architecture, ROMix processes are performed in par-
allel by multiple ROMix PEs. With the local memory placed
near the arithmetic and logic unit (ALU) in each ROMix PE,
the MRSA can execute multiple Scrypt processes in parallel
without conflict when using a shared ALU and without fac-
ing a bandwidth bottleneck when accessing shared memory.
Scrypt also has many loops that process the same input, lead-
ing to a considerable waste of hardware computing power.
Therefore, we deeply analyze the algorithm and propose a
rescheduling technique for theMRSA to remove these unnec-
essary loops. Furthermore, large processing modules such as
SHA-256 and Salsa20/8 are optimized to maximize the hard-
ware efficiency and the hashing performance for the MRSA.

III. THE PROPOSED MULTI ROMix SCRYPT
ACCELERATOR (MRSA)
A. CONFIGURABLE ARCHITECTURE
Scrypt is a parameterizable ASIC-resistant algorithm. There-
fore, each Scrypt application in cryptocurrency mining or

TABLE 2. Memory organization (addresses are expressed in bytes; each
location holds 32 bits).

FIGURE 3. Diagrams of the status and control registers.

security requires specification of the input parameter set.
This parameter set determines the number of loops and the
width of the data passed in the subfunctions. Consequently,
a configurability proposal is applied to help the MRSA adapt
itself to manyworkingmodes, from cryptocurrencymining to
security applications, by providing a parameter modification
mechanism.

Fig. 2 shows the hardware architecture of the MRSA.
It uses three memory regions managed by an Advanced
eXtensible Interface (AXI). The first region is the Config-
uration Memory (CFM), which contains configuration data
to control the MRSA. These configuration data help the
CFM control the Multi ROMix Scrypt Core (MRSC) and the
Scrypt Input Generator (SIG). Accordingly, the configuration
data transmitted to the Execution Controller tell the MRSC
when to start and which working mode and parameters are
configured. The second region is the Input Data Memory
(IDM), which stores the input data for theMRSA. Finally, the
third region is the Hashing Output Memory (HOM). It stores
the returned Scrypt hash results that the MRSA returns to the
host PC.

Table 2 shows the organization of the MRSA memory
in terms of byte-numbered addresses. Each register in the
memory is 32 bits wide, and their addresses are separated
by 4 units. The structures of the Status and Control registers
are detailed in Fig. 3. These are two important registers used
for the proposed configurability function. The Status register,
with address 0 × 00, contains flags representing the status
of the MRSA. The possible flags are the ready, busy, not
found, and data error signals. The Control register stores the
control and configuration data from the host PC. The control
data include the start and reset signals. The configuration

168388 VOLUME 9, 2021



V. T. D. Le et al.: MRSA: High-Efficiency Multi ROMix Scrypt Accelerator for Cryptocurrency Mining and Data Security

FIGURE 4. The MRSC hardware architecture.

data consist of 4-bit segments that define the configuration
parameters r, p, N, and dklen, as defined in Algorithm 1
in Section II. In addition, the Control register stores some
control flags for managing the MRSA and specifying its
working mode. Moreover, other registers in the CFM are used
to store the target threshold and the starting and stop nonces
for specifying the mining task. Finally, the output registers
store the returned valid nonce and the Scrypt hash output from
the MRSA.

The MRSA has two working modes based on the con-
figuration information stored in the CFM: the mining mode
and the general mode. In the mining mode, the MRSA first
receives the block header input from the CFM at the addresses
0 × 2C . . . 0 × 78. Then, the SIG initiates the nonce
value from the Start Nonce register (0 × 7C) and automat-
ically increases the nonce if the result is invalid. A result
is returned only when the value in the Scrypt Out register
(0 × 84 . . . 0 × A4) is lower than that in the Target regis-
ter (0 × 0C . . . 0 × 28) or the nonce is increased above the
configured Maximum Nonce (0× 80). The transmission and
data processing times in the mining mode are significantly
reduced because the MRSA can generate the increased nonce
itself without obtaining new input from the host PC. In the
general mode, the MRSA continuously takes inputs from the
host PC and stores them in the IDM region. In this mode,
the SIG is disabled, and the input is obtained directly from
the IDM region. Accordingly, Scrypt results are returned one
by one to the host PC for each set of input data. The general
mode is suitable for high-performance applications such as
edge computing nodes [44], which need to generate security
keys with large arbitrary and random inputs.

B. MULTI ROMix SCRYPT CORE (MRSC)
In the Scrypt algorithm, ROMix is the most time-consuming
process. It accounts for approximately 98% of the total execu-
tion time in the conventional Scrypt core (CVSC), which does
not applying the pipeline technique. Therefore, we propose

the MRSC hardware architecture to speed up the ROMix
process, thereby drastically increasing the overall hashing
performance of the MRSA.

Fig. 4 presents an overview of the hardware architec-
ture of the MRSC. It consists of a first PBKDF2 core (P1
Core), a cyclic ROMix PE array, a second PBKDF2 core
(P2 Core), and the Execution Controller. The Execution Con-
troller includes module counters, decoders, and multiplexers.
It receives external configuration signals from the CFM;
manages the P1 Core, cyclic ROMix PE array, and P2 Core;
and returns the status signals. It also controls the arbiters to
manage the data flow for the ROMix PEs in the cyclic ROMix
PE array.

With the pipeline technique, the P1 Core processes its
inputs and distributes them sequentially to the ROMix PEs
because the ROMix PE execution time is sixty-four times
longer than that of the P1 Core. Fig. 5 shows the tim-
ing chart of the MRSC, which illustrates this more clearly.
Accordingly, the numbers of execution cycles of the P1 Core,
a ROMix PE, and the P2 Core are 873, 55872, and 267,
respectively. Whenever a result is available, the P1 Core
passes it to an idle ROMix PE. After successfully passing
the output data to a ROMix PE, the P1 Core can continue
receiving and processing the next input, and the next output
will be transmitted to the next ROMix PE. The transmitted
input proceeds in order from ROMix PE 0 to ROMix PE
63. Once the P1 Core finishes the computation for the 65th
input, ROMix PE 0 has produced the result for the 1st input
and is ready to process the 65th input from the P1 Core.
Before processing the next input, however, ROMix PE 0must
transmit the previous output to the P2 Core to compute the
final Scrypt result. Because its computation time is much
shorter than that of the P1Core, the P2Core always completes
its work in time to receive input from the next ROMix PE.

The distribution of data by the P1 Core and the recep-
tion of input by the P2 Core act as a circle. This circle is
established when the P1 Core finishes processing the first

VOLUME 9, 2021 168389



V. T. D. Le et al.: MRSA: High-Efficiency Multi ROMix Scrypt Accelerator for Cryptocurrency Mining and Data Security

FIGURE 5. The timing chart of the MRSC.

sixty-four inputs. The MRSC also reaches the highest hash
rate, called the saturated hash rate, at this time. In the CVSC,
the execution cycles of P1 Core, ROMix Core, and P2 Core
are 873, 55872, and 256 cycles, respectively, for 1.53%, 98%,
and 0.47% of the total execution time. When applying the
pipeline technique to Multi ROMix Scrypt Core, P1 Core
is not executed in parallel. The parallel pipeline execution
includes ROMix Core (ROMix PE) and P2 Core occupied
98.47% of the total execution time. Basically, ROMix and
P2 processes can be combined as a parallel process, although
MRSC has only one P2 Core. According to Amdahl’s law, the
theoretical speedup of MRSC can be approximately sixty-six
times faster than CVSC [45]. Regarding hardware resources,
the MRSC saves sixty-three P1 and P2 Core pairs compared
to sixty-four separate CVSCs. Hence, the MRSC is larger
than the CVSC only by a factor of approximately thirty.
This significantly reduces the hardware cost and increases
the energy efficiency of the MRSC, as will be discussed and
presented in more detail in Section IV.

If all ROMix PEs were to use one shared external memory,
congestion problems would occur due to the limited memory
bandwidth. When the MRSC is running, the ROMix PEs
operate independently, so the memory they use for computa-
tion should preferably be separated. Therefore, in the MRSC,
each ROMix PE uses its own 128 kB local memory (LMM),
as shown in Fig. 6. Accordingly, the ROMix PEs can access
their LMMs simultaneously. This is one of the most impor-
tant features that helps the MRSA implemented on FPGAs
be faster than CPU and GPU Scrypt miners. Each 128 kB
LMM contains one thousand twenty-four 1024-bit memory
cells. This local memory is implemented on the FPGA using
block random access memory (BRAM) resources. It stores
all writing-phase results and provides random addresses for
the reading phase in the ROMix process. Current UltraScale
FPGA lines, such as ALVEO Data Center Accelerator Cards,
provide sufficient BRAM resources for implementing the
MRSC, and their architecture is optimized for pipeline pro-
cessing.

Overall, this proposed configurable architecture not only
increases flexibility but also avoids a long reconfiguration

time for programming new designs from scratch again on the
FPGA because of parameter changes.

C. RESCHEDULING TECHNIQUE
In the PBKDF2 function, there are several loops of the
HMAC function that produce identical results. If these results
can be reused, the number of SHA-256 computations will be
reduced, and the processing speed will significantly increase.
Therefore, we apply a rescheduling technique in the MRSA
to take advantage of this potential for optimizing both hash
performance and hardware resources.

The first PBKDF2 execution includes (N × r × p)/256
HMAC loops, and the last PBKDF2 execution performs
dklen/256 HMAC loops. Through analysis, we have found
that the SHA-256 hash results for the first 512-bit block of
data in step 8 (IXOR) and step 9 (OXOR) in Algorithm 2 are
identical for all remaining HMAC loops in both the P1 and
P2 Cores. As shown in the diagram of the MRSC hardware
architecture presented in Fig. 4, we denote the first 512-bit
block SHA-256 hashes of IXOR and OXOR by IXH and
OXH, respectively. When the first HMAC loop in the P1
Core finishes, the IXH and OXH results can be stored and
reused for the remaining HMAC loops. Accordingly, IXH
and OXH are passed through the ROMix PEs via the pipeline
flow and transmitted to the P2 Core along with the ROMix
PE results. In this way, a significant number of SHA-256 cal-
culations can be eliminated, and the processing speed for the
entire MRSA is also significantly increased. This is because
SHA-256 is one of the most time-consuming processes in
Scrypt. Accordingly, the number of SHA-256 cores in both
the P1 Core and the P2 Core is reduced to one, not three as
in [27], which helps reduce the size of the entire MRSC. This
is achieved by means of the Execution Controller and some
intermediate temporary registers, which have the following
functions: (1) controlling the multiplexers to correctly select
the input for the SHA-256 core, (2) enabling the registers
and function blocks for the storage of the SHA-256 core’s
result, and (3) generating the status signals for the entire core.
The notable modules include the IOXH and Out Memory
modules. The IOXH module is responsible for calculating

168390 VOLUME 9, 2021



V. T. D. Le et al.: MRSA: High-Efficiency Multi ROMix Scrypt Accelerator for Cryptocurrency Mining and Data Security

FIGURE 6. The ROMix PE hardware architecture.

FIGURE 7. The critical path of a ROMix PE.

FIGURE 8. The critical path of the P1 and P2 Cores.

IXOR and OXOR and storing IXH and OXH. The Out
Memory module stores and concatenates the output of the
256-bit HMAC loops to create the final 1024-bit output of
the P1 Core.

As presented in Algorithm 4, BlockMix consists of 2 × r
loops, and each loop performs one Xor, one addition, and one
Salsa20/8 calculation. The Salsa20/8 function consists of four
CRs and four RRs that are performed alternately. Each CR or
RR consists of four QRs that are performed in parallel.

The red dashed arrows in Fig. 7 and 8 show the critical
paths of a ROMix PE and the P1 and P2 Cores, respectively.
These critical paths lie within the QR and SHA-256 pro-
cesses. Although it is possible to split a QR into many stages
to reduce the critical path, the total number of execution
cycles will also increase by a factor of many. Consequently,
the total number of execution cycles of the entire ROMix PE
will similarly increase by a factor of many. This also occurs
with the P1 and P2 Cores when shortening the SHA-256 crit-
ical path. After the estimation and implementation processes,
we find that shortening the critical path cannot increase the
MRSC processing speed because the number of execution
cycles also increases.

Fig. 9(a) shows the conventional BlockMix core hardware
architecture presented in [27]. It uses the CR and RR mod-
ules to perform eight alternating column rounds and row
rounds. This paper presents a proposal to reduce the hardware
resources consumed for the BlockMix core. The proposed
BlockMix core hardware architecture is illustrated in Fig. 9.

FIGURE 9. The BlockMix core hardware architecture: (a) the conventional
BlockMix core; (b) the proposed BlockMix core.

The RR module is removed and replaced by the Mix Round
module, while the proposed core still performs the same
function as the conventional BlockMix core. In the first loop,
the CR module performs a column round. Its result, referred
to as the signal S(1), passes through the Mix Round module
and provides feedback for the CR module, referred to as
the signal S(2). In the next loop, the CR module performs a
row round, and the Mix Round module generates feedback
for the next column round. In this way, after eight loops,
the CR and Mix Round modules have calculated eight inter-
leaved column rounds and row rounds using fewer hardware
resources. Essentially, the Mix Round module is a small and
simple module for reordering the 512-bit signal S(1) into the
signal S(2) as shown in the following equations, where the
subscripts are the indexes of the 32-bit segments.

(S(2)0, S(2)1, . . . , S(2)15)

= Mix(S(1)0, S(1)1, . . . , S(1)15)

S(2)0 = S(1)6; S(2)1 = S(1)9; S(2)2 = S(1)12
S(2)3 = S(1)3; S(2)4 = S(1)10; S(2)5 = S(1)13
S(2)6 = S(1)0; S(2)7 = S(1)7; S(2)8 = S(1)4
S(2)9 = S(1)1; S(2)10 = S(1)14; S(2)11 = S(1)11
S(2)12 = S(1)2; S(2)13 = S(1)5; S(2)14 = S(1)8
S(2)15 = S(1)15

Compared with that of the conventional BlockMix core,
the hardware resource consumption of the proposed core
is reduced by approximately half because the Mix Round
module is very simple. Moreover, reducing the hardware
resources necessary for the BlockMix core significantly helps
in reducing the hardware resources necessary for the entire
MRSA because a BlockMix core is located inside each
ROMix PE.

In general, because ROMix is the function that takes the
most computation time in Scrypt, acceleration for the P1

VOLUME 9, 2021 168391



V. T. D. Le et al.: MRSA: High-Efficiency Multi ROMix Scrypt Accelerator for Cryptocurrency Mining and Data Security

FIGURE 10. The embedded SoC on the Xilinx ALVEO U280 FPGA.

and P2 Cores is not necessary. Therefore, the proposals for
the PBKDF2 cores presented in this research aim to mini-
mize the computational resources used while still achieving
the required number of execution cycles, as mentioned in
Section III-B.

IV. EVALUATION AND EXPERIMENTAL RESULTS
In this section, we present MRSA implementation and verifi-
cation on the ALVEO U280 FPGA. In addition, the proposed
MRSA is evaluated, analyzed, and compared with CPUs,
GPUs and FPGA-based designs. We do not compare our
proposed work with ASIC-based designs because of the fol-
lowing reasons. First, to the best our knowledge, no academic
research of ASIC-based designs was proposed for our com-
parison. Second, the current ASIC-based designs are mostly
commercial ASICminers for blockchainmining, whose spec-
ifications (chip numbers, chip architecture, single-chip area,
etc.) are not published for our evaluations. Third, our pro-
posed accelerator is aimed at multi-applications and designed
towards standalone users to increase the decentralization of
the blockchain network, which is unable for currently com-
mercial ASIC miners.

A. MRSA IMPLEMENTATION AND VERIFICATION ON REAL
HARDWARE
Fig. 10 shows the embedded SoC design on a Xilinx ALVEO
U280 FPGA developed for the proposed MRSA to prove
its correctness and efficiency on real hardware. The system
consists of two main devices: a host PC and a Xilinx ALVEO
U280 Data Center Accelerator Card.

The host PC includes a testcase generator, an embedded C
program, and a Verilog hardware description. It exchanges
data with the FPGA through UART and PCIe cables. The
host PC runs the testcase generator to obtain test data from
real blockchain networks through the Remote Procedure
Call (RPC) protocol. Specifically, the test generator obtains
a set of block header inputs as test data. This data set is used
for verifying the MRSA hardware. The host PC uses the Vitis
tool to embed a C code program to configure and prepare the
input for the MRSA on the ALVEO U280 FPGA. Moreover,
the host PC uses the Vivado tool to load the Verilog hardware
description code onto the ALVEO U280 card.

The design on the ALVEO U280 FPGA includes three
main intellectual property cores (IPs): an embedded process-
ing system (EPS), the MRSA, and a ChipScope Integrated
Logic Analyzer (ChipScope ILA). The EPS consists of a
MicroBlaze embedded processor and storage resource com-
ponents. It receives embedded C code and input data from
the host PC via a Xilinx Virtual JTAG (or PCIe) cable and a
UART cable, respectively. The EPS sends the configuration
and input data to the MRSA IP via an AXI bus. Essentially,
the EPS serves as a bridge to exchange intermediate data
between the host PC and the MRSA. Finally, the MRSA IP is
a version of our proposed design with 64 ROMix PEs on the
ALVEO U280 FPGA. It uses the AXI interface to control the
transmission and reception of data with the EPS and decides
where to store the received data in the MRSA memory.
Finally, the ChipScope ILA is a supported IP from Xilinx
used to check the output value returned from the MRSA.
We use the Xilinx Vivado Design Suite tool (version 2019.2)
to implement this experimental SoC. The system operating
frequency supplied for all three IPs is 100 MHz.

In the verification process, the input data set is a set of
1,000,000 block headers taken from the Litecoin, Fastcoin,
Dogecoin, and Megacoin blockchain networks. The design
is considered correct if all Scrypt hashes returned by the
MRSA are less than the target value. Our verification of the
MRSA includes two processes: functional verification and
real hardware verification. In the functional verification pro-
cess, the MRSA hardware design is tested with the functional
simulation system of the Vivado tool. The transmissions of
all test and configuration data are controlled by testbench
modules. In the real hardware verification process, theMRSA
hardware design is tested in practice on the Xilix ALVEO
U280 FPGA SoC. For this test, the host PC generates the
test data set and controls the ALVEO U280 FPGA to help
it execute the MRSA design correctly. The ChipScope ILA
captures all of the input and output signals for verification.
Our verification results show that in both functional and real
hardware verifications, our MRSA achieves a correct rate of
100%. This experiment demonstrates that our MRSA can be
applied as real mining hardware in cryptocurrency blockchain
networks.

B. EFFICIENCY EVALUATION: MRSA VS.
STATE-OF-THE-ART CPUs AND GPUs
To prove the high efficiency of the MRSA, we designed and
implemented C and CUDA Scrypt software to run the same
verification task for 1,000,000 block headers on two Nvidia
GPUs (Tesla V100 and RTX 3090) and two Intel CPUs
(i9-10940X and i7-3970X). These devices were selected for
implementation because they are the fastest and most popular
devices for performing the blockchain mining task at present.
The numbers of processing threads for the best performance
on the Tesla V100 GPU, the RTX 3090 GPU, the i9-10940X
CPU, and the i7-3970X CPU were 16384, 16384, 28, and 12,
respectively. The experimental results of these devices and
our MRSA are shown in Table 3. Specifically, the energy

168392 VOLUME 9, 2021



V. T. D. Le et al.: MRSA: High-Efficiency Multi ROMix Scrypt Accelerator for Cryptocurrency Mining and Data Security

FIGURE 11. Graphs for the quantitative evaluation of the MRSA design on the Xilinx ALVEO U280 FPGA: (a) hardware resources; (b) power
consumption and hash rate; (c) energy efficiency.

TABLE 3. Comparison of the results of the MRSA SoC and Scrypt software
run on CPUs and GPUs.

efficiency of the ALVEO SoC for our MRSA design with 64
ROMix PEs is 24.4 times (13018.25 vs. 533.6), 52.83 times
(13018.25 vs. 246.4), 867.88 times (13018.25 vs. 15), and
1033.2 times (13018.25 vs. 12.6) higher than those of the
Tesla V100 GPU, the RTX 3090 GPU, the i9-10940X CPU,
and the i7-3970X CPU, respectively. Moreover, the semicon-
ductor technology used in the Xilinx ALVEO U280 FPGA is
16 nm, while the Tesla V100 GPU, the RTX 3090 GPU, and
i9-10940X CPU use 12 nm, 8 nm, and 14 nm semiconductor
technologies, respectively. Apparently, the MRSA SoC on
the ALVEO U280 offers superior power efficiency and hash
rate compared with the most powerful commercial CPUs and
GPUs. This gap is even more pronounced when compared to
current state-of-the-art CPUs.

C. EFFICIENCY EVALUATION: MRSA VS.
STATE-OF-THE-ART FPGA-BASED DESIGNS
In this section, we present an efficiency evaluation of MRSA
with related FPGA-based works. In addition, quantitative
evaluation of MRSA versions on different FPGAs is clearly
presented. As evaluation criteria, we considered the hard-
ware resources, hash rate, throughput, power, and energy
efficiency.

1) COMPARISON WITH RELATED FPGA-BASED WORKS
To prove efficiency and performance improvements, the
MRSA version with 1 ROMix PE and the version
with 32 ROMix PEs are compared with related works based
on the Xilinx Virtex 7 FPGA synthesis results. To the best of
our knowledge, there is only one related work on developing
FPGA-based Scrypt hardware architecture, particularly the
accelerator in [27].

The authors in [27] applied a pipeline technique for their
Scrypt accelerator with dual ROMix cores. Because of uti-
lizing more ROMix cores (dual ROMix cores), their accel-
erator hash rate is higher than that of the MRSA version
with 1 ROMix PE by 1.95 times (5.33 vs. 2.74 kHash/s).
However, their levels of LUT, FF, and BRAM resource
consumption are 5.18 times (48626 vs. 9389), 7.49 times
(78884 vs. 10585), and 2 times (57 vs. 28.5) higher, respec-
tively. As a result, their energy efficiency is 6.08 times lower
than that of the MRSA version with 1 ROMix PE (900 vs.
4986 Hash/J).

On the other hand, the MRSA version with 32 ROMix
PEs used the number of FFs, LUTs, and BRAMs that are
3.28 times (159434 vs. 48626), 1.99 times (156934 vs.
78884), and 16 times (912 vs. 57) higher than the acceler-
ator in [27]. In return, its hash rate is higher 16.77 times
higher (89.38 vs. 5.33 kHash/s) and its power efficiency is
14.13 times higher (12721 vs. 900 Hash/J).

2) QUANTITATIVE EVALUATION ON DIFFERENT FPGAs AND
MRSA VERSIONS
To demonstrate that the proposed MRSA hardware architec-
ture is compatible and stable for high efficiency on FPGAs,
we synthesized our MRSA design on several Xilinx FPGA
devices (ALVEO U280, Virtex 7, and Kintex UltraScale).
Due to the diverse hardware resources of the different FPGA
devices, we built multiple MRSA versions with different
numbers of ROMix PEs. Based on this evaluation, we will
demonstrate that the performance and energy efficiency of
the hardware is proportional to the number of ROMix PEs in
each designed MRSA version.

On the Xilinx ALVEO U280 FPGA, we tested four MRSA
versions: with 1 ROMix PE, 16 ROMix PEs, 32 ROMix PEs,
and 64 ROMix PEs. Fig. 11 shows the quantitative evalua-
tion of these MRSA versions based on the FPGA synthesis
results for the ALVEO U280 in Table 4. Fig. 11(a) shows
that the hardware resources used increase from the MRSA
version with 1 ROMix PE to the version with 64 ROMix PEs.
Compared to the version with 1 ROMix PE, the version
with 64 ROMix PEs has 29.2 times as many flip-flops (FFs)
(272819 vs. 9337) and 29.9 times as many lookup tables
(LUTs) (305419 vs. 10214). Although the total power con-
sumption increases by 5.12 times (18.12 vs. 3.53 W), the
version with 64 ROMix PEs also has a 65.3 times higher hash

VOLUME 9, 2021 168393



V. T. D. Le et al.: MRSA: High-Efficiency Multi ROMix Scrypt Accelerator for Cryptocurrency Mining and Data Security

TABLE 4. FPGA synthesis results for the proposed MRSA in various state-of-the-art FPGA-based designs.

rate (297.76 vs. 4.56 kHash/s), as shown in Fig. 11(b). Based
on the graph in Fig. 11(c), the energy efficiency of the MRSA
version with 64 ROMix PEs is higher than that of the version
with 1 ROMix PE by 12.71 times (16434 vs. 1293 Hash/J).
The hardware cost of the MRSA version with 64 ROMix PEs
is increased only by close to 30 times (29.2× FFs and 29.9×
LUTs) because the PBKDF2 modules are shared among the
ROMix PEs. However, the version with 64 ROMix PEs shows
improvements of 65.3 times in hashing performance and
12.71 times in energy efficiency compared to the MRSA
design with 1 ROMix PE. Obviously, the dynamic power of
the version with 1 ROMix PE is much smaller than the total
power (3.53 vs. 0.39 W), significantly lowering the energy
efficiency.

On the Xilinx Virtex 7 and Kintex UltraScale FPGAs,
the optimal compatible version of MRSA has only
32 ROMix PEs because the resources of these FPGAs, espe-
cially in terms of BRAMs, are not sufficient for the version
with 64 ROMix PEs. With the Multi ROMix architecture, the
number of BRAMs used for each ROMix PE is independent,
and these resources cannot be shared; therefore, this is the
main criterion that determines which version is best on
which FPGA.

On the Xilinx Virtex 7 FPGA, compared with the MRSA
design with 1 ROMix PE, the version with 32 ROMix PEs
requires 16.98 times as many FFs (195434 vs. 9389) and
14.9 times as many LUTs (156934 vs. 10214), respectively.
However, its hash rate is 32.62 times higher (89.34 vs.
2.47 kHash/s), and its energy efficiency is 2.6 times higher
(12721 vs. 4986 Hash/J).

On the Kintex UltraScale FPGA device, the MRSA ver-
sion with 32 ROMix PEs uses numbers of FFs and LUTs
that are 15.93 times (142515 vs. 8947) and 15.42 times
(157128 vs. 10188) higher than in the version with 1 ROMix
PE. In return, its hash rate increases by 32.67 times (99.97 vs.
3.06 kHash/s), and its energy efficiency is also 3.84 times
higher (12025 vs. 3134 Hash/J) compared to the version
with 1 ROMix PE.

Overall, as the number of ROMix PEs increases, the
increase in the hash rate is much greater than the increase
in the consumption of hardware resources. The energy

efficiency also increases significantly compared to the con-
ventional design. Therefore, the proposed MRSA design can
achieve higher power efficiency when the most suitable ver-
sion is chosen for each FPGA device.

D. FLEXIBILITY ADVANTAGES OF MRSA
In this subsection, we discuss the flexibility advantages of
the proposed MRSA architecture in two aspects: dynamic
configuration and static reconfiguration.

1) DYNAMIC CONFIGURATION
The proposed configurable architecture, described in
section III-A, provides our accelerator (MRSA) the flexibility
for switching operation modes of the Scrypt algorithm on
runtime configuration. This architecture has an impact on
both ASIC and FPGA implementation. In ASIC, it enhances
the flexibility of the ASIC-based accelerator. In FPGA,
it helps to avoid static reconfiguration from scratch in case
of unnecessary.

2) STATIC RECONFIGURATION
This kind of flexibility is provided by the nature of FPGA
platforms, which allows the accelerator to be reconfigured
before runtime to meet the actual requirements by consid-
ering the tradeoff between the processing rate and power
consumption/hardware cost. Our proposed MRSA allowed
static reconfiguration of the number of ROMix Scrypt Cores
per accelerator. For example, the ALVEOU280 FPGA imple-
ments the MRSA version with 64 ROMix PEs to max-
imize performance for blockchain mining or the MRSA
version with 32/16/8 ROMix PEs to reduce energy costs
for data authentication applications. Furthermore, the cal-
culations inside P1, ROMix PEs, and P2 circuits may
be reconfigured in the future to adopt the change of the
Scrypt algorithm for accommodating security enhancement.
In this context, we are not able to do so with the exist-
ing ASIC-based accelerators. In short, the static reconfig-
uration feature of the FPGA allows our proposed MRSA
to tradeoff between accelerator processing rate and power
consumption/hardware cost to meet the actual requirements,

168394 VOLUME 9, 2021



V. T. D. Le et al.: MRSA: High-Efficiency Multi ROMix Scrypt Accelerator for Cryptocurrency Mining and Data Security

as well as enhance the circuit flexibility to adopt the future
change.

V. CONCLUSION
Scrypt is an ASIC-resistant algorithmwith many applications
in information security, especially in PoW-based blockchain
mining, because it helps avoid distributed destructive attacks
from ASIC miners. Scrypt requires many iterations along
with high computational memory usage. It is mostly imple-
mented on general-purpose hardware such as CPUs and
GPUs. However, CPUs and GPUs usually have very slow
computation speeds and extremely high power consump-
tion due to their sequential and complex hardware archi-
tectures. Moreover, Scrypt poses the risk that ASICs may
easily become obsolete and useless because of its parame-
terizable nature. In this paper, we propose the Multi ROMix
Scrypt Accelerator (MRSA) hardware architecture to be
implemented on an FPGA hardware platform. By means of
optimization techniques such as configurability parameters
and working modes, the use of multiple ROMix processing
elements with memory near the ALUs, and the rescheduling
and reuse of computational resources, the system’s energy
efficiency is significantly improved. Experimental results for
various versions of our MRSA design on FPGA devices have
shown its compatibility and high efficiency. In particular,
we have implemented the MRSA in hardware on a real
ALVEO U280 SoC to verify its accuracy and performance in
actual operation. The results show that the power efficiency
is improved by 24.4 to 52.8 times compared to GPUs and by
867.88 to 1033.2 times compared to CPUs.
Thus, the proposed MRSA design for implementation on

FPGAs has partially solved the problems of low perfor-
mance and high power consumption on CPUs and GPUs.
In particular, it helps FPGAs solve almost all of the typical
problems and risks posed by Scrypt on ASICs. However,
with its computational-memory-intensive nature, the pro-
posed MRSA still has high requirements in terms of BRAM
resources. This hinders the implementation of the optimal
MRSA version (with 64 ROMix PEs) on moderate-resource
FPGA devices such as the Xilinx Virtex 7 and Kintex Ultra-
Scale. Therefore, we believe that developing new hardware
designs with new techniques and architectures to optimize
memory usage for application on cheaper and smaller FPGAs
is a promising research trend for the near future.

APPENDIX
The Scrypt software code for implementation on CPUs and
GPUs and the synthesized results of the prototype, optimized,
and proposed architectures can be found at https://github.
com/archlab-naist/Multi-ROMix-Scrypt-Accelerator/.

REFERENCES
[1] X. Li, P. Jiang, T. Chen, X. Luo, and Q. Wen, ‘‘A survey on the security of

blockchain systems,’’ Future Gener. Comput. Syst., vol. 107, pp. 841–853,
Jun. 2020.

[2] U. Mukhopadhyay, A. Skjellum, O. Hambolu, J. Oakley, L. Yu, and
R. Brooks, ‘‘A brief survey of cryptocurrency systems,’’ in Proc. 14th
Annu. Conf. Privacy, Secur. Trust, Dec. 2016, pp. 745–752.

[3] C. Kerry, P. Gallagher, and C. Romine, ‘‘FIPS PUB 186-4 federal informa-
tion processing standards publication digital signature standard (DSS),’’
U.S. Dept. Commerce/Nat. Inst. Standards Technol., Jul. 2013.

[4] R. C. Merkle, ‘‘A certified digital signature,’’ in Proc. Conf. Theory Appl.
Cryptol., 1989, pp. 218–238.

[5] G. O. Karame, E. Androulaki, and S. Capkun, ‘‘Double-spending fast
payments in bitcoin,’’ in Proc. 19th ACM Conf. Comput. Commun. Secur.
(CCS), Oct. 2012.

[6] G. O. Karame, E. Androulaki, and S. Capkun, ‘‘Two bitcoins at the price of
one? Double-spending attacks on fast payments in bitcoin,’’ IACR Cryptol.
ePrint Arch., vol. 2012, p. 248, Oct. 2012.

[7] C. Pérez-Solà, S. Delgado-Segura, G. Navarro-Arribas, and
J. Herrera-Joancomartí, ‘‘Double-spending prevention for bitcoin zero-
confirmation transactions,’’ Int. J. Inf. Secur., vol. 18, no. 4, pp. 451–463,
Nov. 2018.

[8] S. Goldwasser, S. Micali, and R. L. Rivest, ‘‘A digital signature scheme
secure against adaptive chosen-message attacks,’’ SIAM J. Comput.,
vol. 17, no. 2, pp. 281–308, Apr. 1988.

[9] P. Kubiak and M. Kutyłowski, ‘‘Preventing a fork in a blockchain—David
fighting Goliath,’’ in Proc. IEEE 19th Int. Conf. Trust, Secur. Privacy
Comput. Commun., Dec./Jan. 2021, pp. 1044–1051.

[10] S. Kim, Y. Kwon, and S. Cho, ‘‘A survey of scalability solutions on
blockchain,’’ in Proc. Int. Conf. Inf. Commun. Technol. Converg. (ICTC),
Oct. 2018, pp. 1204–1207.

[11] K. Li, H. Li, H. Hou, K. Li, and Y. Chen, ‘‘Proof of vote: A high-
performance consensus protocol based on vote mechanism & consortium
blockchain,’’ in Proc. IEEE 19th Int. Conf. High Perform. Comput. Com-
mun.; IEEE 15th Int. Conf. Smart City; IEEE 3rd Int. Conf. Data Sci. Syst.
(HPCC/SmartCity/DSS), Dec. 2017, pp. 466–473.

[12] F. Bravo-Marquez, S. Reeves, and M. Ugarte, ‘‘Proof-of-learning: A
blockchain consensus mechanism based on machine learning competi-
tions,’’ in Proc. IEEE Int. Conf. Decentralized Appl. Infrastruct. (DAP-
PCON), Apr. 2019, pp. 119–124.

[13] Y. Wang, S. Cai, C. Lin, Z. Chen, T. Wang, Z. Gao, and C. Zhou, ‘‘Study of
blockchains’s consensus mechanism based on credit,’’ IEEE Access, vol. 7,
pp. 10224–10231, 2019.

[14] S. Nakamoto, ‘‘A peer-to-peer electronic cash system,’’ Oct. 2018.
[Online]. Available: https://bitcoin.org/bitcoin.pdf

[15] J. Li, N. Li, J. Peng, H. Cui, and Z.Wu, ‘‘Energy consumption of cryptocur-
rency mining: A study of electricity consumption in mining cryptocurren-
cies,’’ Energy, vol. 168, pp. 160–168, Feb. 2019.

[16] K. O’Neal and P. Brisk, ‘‘Predictive modeling for CPU, GPU, and FPGA
performance and power consumption: A survey,’’ in Proc. IEEE Comput.
Soc. Annu. Symp. VLSI (ISVLSI), Jul. 2018, pp. 763–768.

[17] T. H. Tran, H. L. Pham, and Y. Nakashima, ‘‘A high-performance
multimem SHA-256 accelerator for society 5.0,’’ IEEE Access, vol. 9,
pp. 39182–39192, 2021.

[18] H. L. Pham, T. H. Tran, T. D. Phan, V. T. D. Le, D. K. Lam, and
Y. Nakashima, ‘‘Double SHA-256 hardware architecture with com-
pact message expander for bitcoin mining,’’ IEEE Access, vol. 8,
pp. 139634–139646, 2020.

[19] L. V. T. Duong, N. T. T. Thuy, and L. D. Khai, ‘‘A fast approach for
bitcoin blockchain cryptocurrency mining system,’’ Integration, vol. 74,
pp. 107–114, Sep. 2020.

[20] H. Cho, ‘‘ASIC-resistance of multi-hash proof-of-work mechanisms for
blockchain consensus protocols,’’ IEEE Access, vol. 6, pp. 66210–66222,
2018.

[21] M. H. Ashik, M. M. S. Maswood, A. G. Alharbi, and D. Medhi, ‘‘FPoW:
An ASIC-resistant proof-of-work for blockchain applications,’’ in Proc.
IEEE Region Symp. (TENSYMP), Jun. 2020, pp. 1608–1611.

[22] Litecoin. Accessed: May 10, 2021. [Online]. Available: https://litecoin.
com

[23] Dogecoin. Accessed: May 10, 2021. [Online]. Available: https://dogecoin.
com

[24] Fastcoin. Accessed: May 10, 2021. [Online]. Available: https://fastcoin.ca
[25] Megacoin. Accessed: May 10, 2021. [Online]. Available: https://www.

megacoin.eu
[26] List of Scrypt Crypto Currencies. Accessed:May 10, 2021. [Online]. Avail-

able: https://en.bitcoinwiki.org/wiki/List_of_scrypt_crypto_currencies
[27] L. V. T. Duong, D. V. Hieu, P. H. Luan, T. T. Hong, and L. D. Khai,

‘‘Hardware implementation for fast block generator of Litecoin blockchain
system,’’ in Proc. Int. Symp. Electr. Electron. Eng. (ISEE), Apr. 2021,
pp. 9–14.

VOLUME 9, 2021 168395



V. T. D. Le et al.: MRSA: High-Efficiency Multi ROMix Scrypt Accelerator for Cryptocurrency Mining and Data Security

[28] C. Percival and S. Josefsson, ‘‘The scrypt password-based key derivation
function,’’ Internet Eng. Task Force, 2012.

[29] D. Watkins, ‘‘Scrypt mining with ASICS,’’ Tech. Rep., 2017.
[30] H. Kirrmann, ‘‘Data format and bus compatibility in multiprocessors,’’

IEEE Micro, vol. 3, no. 4, pp. 32–47, Aug. 1983.
[31] B. Kaliski, PKCS #5: Password-Based Cryptography Specification Ver-

sion 2.0, document RFC 2898, Sep. 2000. [Online]. Available: https://rfc-
editor.org/rfc/rfc2898.txt

[32] D. H. Krawczyk, M. Bellare, and R. Canetti, HMAC: Keyed-Hashing
for Message Authentication, document RFC 2104, Feb. 1997. [Online].
Available: https://rfc-editor.org/rfc/rfc2104.txt

[33] M. Bellare, R. Canetti, and H. Krawczyk, ‘‘Message authentication using
hash functions: The HMAC construction,’’ RSA Lab. CryptoBytes, vol. 2,
no. 1, pp. 12–15, 1996.

[34] S. Frankel and S. G. Kelly, Using HMAC-SHA-256, HMAC-SHA-384, and
HMAC-SHA-512 With IPsec, document RFC 4868, May 2007. [Online].
Available: https://rfc-editor.org/rfc/rfc4868.txt

[35] A. Visconti and F. Gorla, ‘‘Exploiting an HMAC-SHA-1 optimization to
speed up PBKDF2,’’ IEEE Trans. Depend. Sec. Comput., vol. 17, no. 4,
pp. 775–781, Jul. 2020.

[36] T. Hansen,U.S. Secure Hash Algorithms (SHA and SHA-Based HMAC and
HKDF), document RFC 6234, May 2011. [Online]. Available: https://rfc-
editor.org/rfc/rfc6234.txt

[37] D. J. Bernstein, ‘‘The Salsa20 family of stream ciphers,’’ in New Stream
Cipher Designs. Berlin, Germany: Springer, 2008, pp. 84–97.

[38] (2021). Bitmain Antminer L7. Accessed: Sep. 27, 2021. [Online].
Available: https://shop.bitmain.com/product/detail?pid=00020210626153
443050GW7uCVy10679

[39] W. Wang, D. T. Hoang, P. Hu, Z. Xiong, D. Niyato, P. Wang, Y. Wen, and
D. I. Kim, ‘‘A survey on consensus mechanisms and mining strategy man-
agement in blockchain networks,’’ IEEE Access, vol. 7, pp. 22328–22370,
2019, doi: 10.1109/ACCESS.2019.2896108.

[40] A. I. Sanka, M. Irfan, I. Huang, and R. C. C. Cheung, ‘‘A survey of
breakthrough in blockchain technology: Adoptions, applications, chal-
lenges and future research,’’ Comput. Commun., vol. 169, pp. 179–201,
Mar. 2021.

[41] T. Ichikura, R. Yamano, Y. Kikutani, R. Zhang, and Y. Nakashima,
‘‘EMAXVR:A programmable accelerator employing near ALU utilization
to DSA,’’ in Proc. IEEE Symp. Low-Power High-Speed Chips (COOL
CHIPS), Apr. 2018, pp. 1–3.

[42] J. Iwamoto, Y. Kikutani, R. Zhang, and Y. Nakashima, ‘‘Daisy-chained
systolic array and reconfigurable memory space for narrow memory
bandwidth,’’ IEICE Trans. Inf. Syst., vol. E103.D, no. 3, pp. 578–589,
Mar. 2020.

[43] D. Phan, T. H. Tran, and Y. Nakashima, ‘‘SHA-256 implementation on
coarse-grained reconfigurable architecture,’’ in Proc. IEEE Symp. Low
Power High-Speed Chips, Japan, Apr. 2020.

[44] C. Jiang, J. Wan, and H. Abbas, ‘‘An edge computing node deployment
method based on improved k-means clustering algorithm for smart manu-
facturing,’’ IEEE Syst. J., vol. 15, no. 2, pp. 2230–2240, Jun. 2021.

[45] J. L. Gustafson, ‘‘Reevaluating Amdahl’s law,’’ Commun. ACM, vol. 31,
no. 5, pp. 532–533, 1988.

VU TRUNG DUONG LE (Graduate StudentMem-
ber, IEEE) received the degree in IC and hardware
design (engineering) from Vietnam National Uni-
versity Ho Chi Minh City (VNUHCM)-University
of Information Technology, in 2020. He is cur-
rently pursuing the M.S. degree with the Nara
Institute of Science and Technology (NAIST),
Japan. His research interests include blockchain
technology and cryptography.

THI HONG TRAN (Member, IEEE) received
the bachelor’s degree in physics and the master’s
degree in microelectronics from Vietnam National
University Ho Chi Minh City (VNU-HCM)-
University of Science, Vietnam, in 2008 and 2012,
respectively, and the Ph.D. degree in information
science from the Kyushu Institute of Technology,
Japan, in 2014. From January 2015 to September
2021, she was with the Nara Institute of Science
and Technology (NAIST), Japan, as a full-time

Assistant Professor. Since October 2021, she has been with Osaka City
University, Japan, as a full-time Lecturer, and NAIST as a Visiting Associate
Professor. Her research interests include digital hardware circuit design,
algorithms related to wireless communication, communication security,
blockchain technology, SHA-2, SHA-3, and cryptography. She is a Regular
Member of IEEE, IEICE, REV-JEC, and others.

HOAI LUAN PHAM (Graduate Student Member,
IEEE) received the bachelor’s degree in computer
engineering from Vietnam National University Ho
Chi Minh City (VNUHCM)-University of Infor-
mation Technology, Vietnam, in 2018. He is cur-
rently pursuing the M.S. degree with the Nara
Institute of Science and Technology (NAIST),
Japan. His research interests include blockchain
technology and cryptography.

DUC KHAI LAM received the B.E. and M.S.
degrees from Vietnam National University Ho
Chi Minh City (VNUHCM)-University of Sci-
ence, in 2006 and 2011, respectively, and the Ph.D.
degree from the Kyushu Institute of Technology,
Japan, in 2016. He is currently with VNUHCM-
University of Information Technology, serving as
a Lecturer and a Researcher. His research interests
include wireless communication systems, digital
signal processing, ASICs, and VLSI design.

YASUHIKO NAKASHIMA (Senior Member,
IEEE) received the B.E., M.E., and Ph.D. degrees
in computer engineering from Kyoto University,
in 1986, 1988, and 1998, respectively. He was
a Computer Architect with the Computer and
System Architecture Department, Fujitsu Ltd.,
from 1988 to 1999. From 1999 to 2005, he was an
Associate Professor with the Graduate School of
Economics, Kyoto University. Since 2006, he has
been a Professor with the Graduate School of

Information Science, Nara Institute of Science and Technology. His research
interests include computer architecture, emulation, circuit design, and accel-
erators. He is a fellow of IEICE, a Senior Member of IPSJ, and a member of
the IEEE CS and ACM.

168396 VOLUME 9, 2021

http://dx.doi.org/10.1109/ACCESS.2019.2896108


A High-Efficiency FPGA-based BLAKE-256
Accelerator for Securing Blockchain Networks

Pham Hoai Luan1, Thi Hong Tran1,2, Vu Trung Duong Le1, and Yasuhiko Nakashima1

1 Nara Institute of Science and Technology, Nara, Japan
2 Osaka City University, Osaka, Japan

Email: pham.hoai luan.ox7@is.naist.jp, hong@osaka-cu.ac.jp, le.vu trung duong.lp4@is.naist.jp, nakashim@is.naist.jp

Abstract—Developing hardware-efficient and high-speed BLAKE-
256 hardware has recently been a research trend because BLAKE-
256 is today an important hash function for maintaining the
security of blockchain networks, such as Decred and HyperCash.
However, existing BLAKE-256 circuits still have low performance
and hardware efficiency. Therefore, this paper proposes the BLAKE-
256 accelerator to achieve high performance and hardware efficiency
for securing the blockchain networks. To achieve those goals, the
proposed BLAKE-256 accelerator has three novel optimization tech-
niques. First, a fully unrolled datapath architecture is proposed to
generate one hash per clock cycle, thus improving the performance.
Second, a pipelined arithmetic-logic unit (ALU) is proposed to
shorten the critical path. Third, nonce generating and checking
block mechanisms (NGB and NCB) are developed to reduce the
data transfer time between the CPU and the accelerator, which can
improve the total processing rate. Based on our experiments on a
Xilinx Zynq UltraScale+ MPSoC ZCU102 FPGA at the system-on-
chip level, the impact of proposed optimization techniques is clearly
proven. Moreover, experimental results on several FPGAs show that
our proposed accelerator has significantly better throughput and
area efficiency than previous BLAKE-256 architectures.

Index Terms—BLAKE-256, blockchain, security, Decred.

I. INTRODUCTION

The National Institute of Standards and Technology (NIST)
initiated an SHA-3 competition to select new hash algorithms to
replace old generations such as SHA-1 and SHA-2. In the third
round competition, the BLAKE algorithm was one of the final
five candidates. With its outstanding security, the BLAKE algo-
rithm, especially the BLAKE-256 function, is widely applied in
many security applications, such as hased-based Radio Frequency
Identification (RFID) security protocols, hash-based message au-
thentication, password encryption, JPEG image encryption, and
digital signature [1]–[3].

Beyond typical security applications, BLAKE-256 has recently
been applied in several famous cryptocurrencies, such as Decred
[4]. Particularly, the blockchain technology behind cryptocurren-
cies uses BLAKE-256 to validate transactions, called blockchain
mining. For the sake of network security, miners may relentlessly
perform the BLAKE-256 computation of the block header to
find a valid nonce to make a hash output smaller than the target
value, as shown in Fig. 1. To quickly determine a valid nonce,
miners need an ultrahigh-performance BLAKE-256 circuit to
accelerate the hash computation of the block header. In addition to
acceleration for competing favorably in a blockchain network, the
BLAKE-256 circuit should be power efficient to make the energy
costs do not exceed the mining income. Therefore, developing a
high-performance and hardware-efficient BLAKE-256 accelerator
has thus been a research trend in recent years.

Conventional studies have proposed various BLAKE-256 ar-
chitectures to improve the performance and power consumption

Fig. 1. The BLAKE-256 architecture for block mining.

[5]–[10]. For example, authors in [5], [8]–[10] have proposed
compact BLAKE-256 architectures to optimize the area and
energy consumption. Specifically, authors in [8], [9] proposed a
small arithmetic-logic unit (ALU) including all required operators
in parallel and distributed RAM to store enough working variables
for the BLAKE-256 computation. In [5] and [10], a four-stage
pipelined ALU was developed by harnessing the intrinsic paral-
lelism of the BLAKE-256 function to interleave the calculation
of four instances of the Gi function, thus significantly reducing
the area of the BLAKE-256 circuit. Despite their significant im-
provements in the area, the BLAKE-256 circuits in [5], [8]–[10]
have very low throughput since their compact ALUs must suffer
a large number of cycles for one hash computation. To improve
throughput, authors in [6], [7] proposed round-transformation
BLAKE-256 cores to perform in a few rounds for generating
a hash output. Although the proposed architectures in [6], [7]
have dramatically reduced the number of cycles for the BLAKE-
256 computation, their throughput was still limited because of
high latency. Overall, the major problem in previous BLAKE-
256 hardware is the low performance, making them inefficient to
be applied for blockchain mining.

To address the problems with previous works, this paper
proposes a BLAKE-256 accelerator to achieve high performance
and hardware efficiency for blockchain mining. Three new op-
timization techniques are proposed to achieve these goals: the
fully unrolled datapath, the pipelined ALU, and nonce generating
and checking block mechanisms (NGB and NCB). Besides, the
experimental results on several FPGAs prove that our accelerator
is significantly better than the existing BLAKE-256 architectures
in performance and area efficiency. Finally, our paper is orga-
nized as follows: Section II presents the background. Section III
describes our proposed BLAKE-256 accelerator in detail. Sec-
tion IV presents the verification and evaluation of the proposed
accelerator on the FPGA. Section V concludes the paper.



Algorithm 1 Hash out = BLAKE-256 (Message in, Hash in)
1: W[0:15] = Message in; H[0:7] = Hash in
2: V[0:15] = Initialization(H[0:7], S, T , C[0:7])
3: for r ← 0 to 13 do
4: Permutation:
5: r′ ← (r ≡ 10)
6: for i ← 0 to 7 do
7: W ′

i = Wσr′ (2i)
⊕ Cσr′ (2i+1)

8: W ′
i+1 = Wσr′ (2i+1)⊕ Cσr′ (2i)

9: Compression:
10: G0(V0, V4, V8 , V12, W ′

0 , W ′
1 )

11: G1(V1, V5, V9 , V13, W ′
2 , W ′

3 )
12: G2(V2, V6, V10, V14, W ′

4 , W ′
5 )

13: G3(V3, V7, V11, V15, W ′
6 , W ′

7 )
14: G4(V0, V5, V10, V15, W ′

8 , W ′
9 )

15: G5(V1, V6, V11, V12, W ′
10, W ′

11)
16: G6(V2, V7, V8 , V13, W ′

12, W ′
13)

17: G7(V3, V4, V9 , V14, W ′
14, W ′

15)
18: HO[0:7] = Finalization(V[0:15], Hash in, S)
19: return Hash out = HO[0:7]

Fig. 2. Overview architecture of the proposed BLAKE-256 accelerator at the
system-on-chip level.

II. BACKGROUND

This section briefly presents the primary points of the BLAKE-
256 algorithm that are beneficial to developing our proposed
accelerator. Specifically, Algorithm 1 illustrates the BLAKE-256
computation, which consists of two main processes: message
expansion and message compression.

Message permutation (MP): The 512-bit message input is
spared to sixteen chunks of the 32-bit word (denoted as Wi,
0≤i≤15). In each round, sixteen message words and constants
are performed the permutations, which are parameterized by
the round index σr′ . Then, sixteen XOR computations between
permuted Wi and constants are executed to produce new sixteen
32-bit words (denoted as W ′

i , 0≤i≤15).
Message compression (MC): The message compression com-

presses the 14 chunks of sixteen W ′
i from the MC process into

a 256-bit hash output in 14 rounds. Particularly, the MC process
includes three steps. First, sixteen internal state values (denoted as
Vi, 0≤i≤15) is initialized by a initialization() function. Second,
sixteen internal state values V0, .., V15 are calculated and updated
based on eight G-functions (denoted as Gj , 0≤j≤7) in 14 rounds.
Third, the hash output (denoted as HOi, 0≤i≤7) is updated by
a finalization() function.

The details of the permutation of the σr′ , Gj(), initialization(),
and finalization() functions can be found at [11].

III. PROPOSED BLAKE-256 ACCELERATOR

After analyzing the BLAKE-256 algorithm, we propose the
BLAKE-256 accelerator for blockchain mining. Particularly,

Fig. 3. Fully unrolled BLAKE-256 datapath architecture.

Fig. 2 illustrates the overview architecture of the proposed
BLAKE-256 accelerator at the system-on-chip (SoC) level. To
control the blockchain mining task, the CPU sends data inputs to
the accelerator via AXI bus, including message parsed from the
block header (denoted as Wi, 0≤i≤15), hash input (denoted as
Hi, 0≤i≤7), the target value for comparing with the hash output
to find the valid nonce, and the start signal for beginning the
working session. After completing the mining process, the CPU
reads the output data from the proposed BLAKE-256 accelerator,
including the found status signal to inform whether the valid
nonce is found and the valid nonce and valid hash values. To
achieve high performance and hardware efficiency for blockchain
mining, the proposed BLAKE-256 accelerator has three novel
optimization techniques, which are presented in detail as follows.

A. Optimization 1: Fully Unrolled Datapath Architecture

For improving the performance of the BLAKE-256 accelerator,
the loop calculation of MP and MC processes need to be
performed fully parallel. Therefore, this section proposes the fully
unrolled datapath architecture for the Blake-256/512 accelerator
to perform the loop calculation in parallel.

Fig. 3 describes the fully unrolled BLAKE-256 datapath ar-
chitecture, where the MP and MC processes are unfolded to 14
pipeline stages. Precisely, the MP process includes 14 groups of
sixteen variable registers for message words W0, .., W15 and
14 permutation blocks (denoted as Pr, 0≤r≤13), where each
Pr block performs the permutation computation in the rth loop.
The MC process includes sixteen working variable registers for
internal states V0, .., V15 and 14 ALU blocks (denoted as ALUr,
0≤r≤13), where each ALUr block computes eight G-functions
in the rth loop. Moreover, the fully unrolled datapath has ini-
tialization and finalization circuits to calculate the initialization()
and finalization() functions, respectively. By virtue of the fully
unrolled datapath, the proposed accelerator can perform the hash
computations for consecutive message inputs and generate one
hash output per cycle, thereby accelerating its performance.

B. Optimization 2: Pipelined ALU Architecture

The critical path of each ALUr block must go through two
G-function blocks, which contain twelve 32-bit adders, eight 32-
bit XORs, and eight rotation operators, resulting in low operating
frequency and limited throughput. To shorten the critical path, we
propose applying the pipeline technique for the ALU architecture.

Fig. 4 shows the pipelined ALU architecture. Specifically,
each ALU includes eight G-functions, where the first four G-
functions compute in parallel and then pass the results to the
last four G-functions. To halve the critical path, we place the
registers between the first and last four G-functions. On the other



Fig. 4. Pipelined ALU architecture with eight pipelined G-functions.

Fig. 5. Inside architecture of each pipelined G-function.

hand, we also apply the pipeline technique to eight G-functions
to minimize the critical path, as shown in Fig. 5. Particularly,
each G-function is divided into two pipeline stages, where the
critical path of each pipeline stage only passes through three 32-
bit adders, two 32-bit XOR gates, and two rotation operators.
Accordingly, each ALU consists of a four-stage pipeline and its
critical path is theoretically reduced by a quarter. Note that we
must also place four 512-bit registers for the MP process in each
round to synchronize the computational data with the four-stage
pipelined ALU architecture.

C. Optimization 3: Nonce Generating and Checking Mechanisms

In blockchain mining, the BLAKE-256 accelerator should try
all possible instances of 232 32-bit nonce values, equivalent to
computing 232 512-bit messages, to find the valid hash output
smaller than the target. However, transferring 232 messages/hash
outputs between the CPU and the accelerator via the limited
AXI bus bandwidth is a bottleneck, which decreases the total
processing rate significantly and makes the proposed optimization
techniques 1 and 2 meaningless. Therefore, this section proposes
two mechanisms, nonce generating block (NGB) and nonce
checking block (NCB), to improve the processing time.

Fig. 6 illustrates two proposed mechanisms, including NGB and
NCB. Concretely, bassed on our investigation in the blockchain
network, such as Decred, the nonce value is located at position W3

of all messages. Therefore, the NGB is developed to automatically
update 232 W3 values, equivalent to creating 232 messages to the
BLAKE-256 computation, as shown in Fig. 6 (a). Besides, the
NCB is used to compare the hash output of the BLAKE-256
computation with the target value to find a valid nonce value, as
shown in Fig. 6 (b). If the hash output is less than the target,
the found status flag will equal 1, and then 32-bit found nonce
and 256-bit hash output values will be written to the register files
(Reg. file) for the CPU to check. By virtue of the NGB and NCB

Fig. 6. Two mechanisms: (a) Nonce generating block (NGB) and (b) nonce
checking block (NCB).

mechanisms, the accelerator performance for blockchain mining
is not reliant on the AXI bus bandwidth, thus achieving 100%
hardware efficiency.

IV. VERIFICATION AND EVALUATION

A. FPGA-Based Verification

To prove that the accelerator operates correctly on real hard-
ware, we built the proposed BLAKE-256 accelerator at the
system-on-chip level on a Xilinx Zynq UltraScale+ MPSoC
ZCU102 FPGA, same as shown in Fig. 2. The message input is
extracted from the block headers in the actual Decred blockchain
network. For verification, the found found nonce and hash output
values from the proposed BLAKE-256 accelerator are compared
with the available results on the website of the Decred network.
The experimental result shows that our accelerator operates 100%
correctly for the blockchain mining process.

B. Evaluating the Impact of the Optimization Techniques

To prove the impact of the proposed optimization techniques
on the Xilinx Zynq UltraScale+ MPSoC ZCU102 FPGA, we
evaluate the throughput, area efficiency, and energy efficiency of
designs as the addition of one optimization technique at a time
to the proposed accelerator at the system-on-chip level, as shown
in Fig. 7. Specifically, the throughput and area efficiency of the
accelerator can be improved by adding optimization techniques
one by one, as shown in Fig. 7 (a) and (b). Meanwhile, the
energy efficiency of the accelerator is only superior when all
three optimization techniques are added, as shown in Fig. 7 (c).
Overall, the throughput, area efficiency, and energy efficiency of
the BLAKE-256 accelerator are only best improved by adding all
three proposed optimization techniques.

C. Performance Evaluation

This section presents a performance evaluation between the
proposed BLAKE-256 accelerator and previous BLAKE-256 ar-
chitectures, such as [5]–[10]. For a fair comparison, we have
only synthesized the proposed BLAKE-256 accelerator on two
Xilinx FPGA boards, including Virtex 5 XC5VLX20T-2 FF323
and Virtex 5 XC6VCX75T-2 FF484. During our experiment, we
used a Xilinx ISE 14.7 tool for the synthesis. The comparative
factors include throughput and area efficiency.

The throughput, measured in megabit per second (Mbps), is cal-
culated by eq. (1), where Block Size is 512 bits and #Cycle/Hash
is the number of clock cycles to create one hash output.

Throughput =
Block Size× Frequency

#Cycle/Hash
(1)

Table I shows the throughput and area efficiency compar-
isons between the proposed BLAKE-256 accelerator and existing
BLAKE-256 architectures on the Virtex 5 and Virtex 6 boards.



Fig. 7. The (a) throughput, (b) area efficiency, and (c) energy efficiency of designs
as the addition of one optimization technique at a time to the proposed accelerator.

Note that the Block RAMs (BRAMs) used in the BLAKE-256
architectures of [5] and [8] are normalized to slices for a fair
comparison with other architectures.

On the Virtex 5 board, the proposed BLAKE-256 accelerator
utilizes 21,867 slices, operates at a maximum frequency of 218
MHz, and delivers the throughput of 111,616 Mbps. Compared
to previous works, the proposed BLAKE-256 accelerator is 496.1
times (111,616 vs. 225), 73.9 times (111,616 vs. 1,510), and
41.7 times (111,616 vs. 2,676) greater than [5], [6], and [7] in
throughput, respectively, and 7.1 times (5.10 vs. 0.72), 3.8 times
(5.10 vs 1.35), and 3.2 times (5.10 vs 1.61) better than [5], [6],
and [7] in area efficiency, respectively.

On the Virtex 6 board, the proposed BLAKE-256 accelerator
occupies 125,952 slices, operates at a maximum frequency of 246
MHz, and achieves the throughput of 125,952 Mbps. Compared to
the related works, the proposed BLAKE-256 accelerator is 587.5
times (125,952 vs. 214.4), 1,061.1 times (125,952 vs. 118.7), and
834.7 times (125,952 vs. 150.9) better than [8], [9], and [10] in
throughput, respectively, and 6.9 times (5.53 vs. 0.80), 5.5 times
(5.53 vs 1.01), and 1.8 times (5.53 vs 3.02) higher than [8], [9],
and [10] in area efficiency, respectively.

V. CONCLUSION

Developing a high-performance BLAKE-256 accelerator with
high hardware efficiency is an attractive research trend since the
BLAKE-256 functions are widely adopted in many speed-demand
modern applications, such as blockchain mining. Unfortunately,
the existing BLAKE-256 architectures are limited in perfor-
mance and hardware efficiency. Therefore, this paper proposes
the BLAKE-256 accelerator to improve the processing rate and
hardware efficiency. To achieve those goals, three optimization
techniques are proposed, including the fully unrolled datapath,
the four-stage piplined ALU, and nonce generating and checking

TABLE I
PERFORMANCE COMPARISON BETWEEN THE PROPOSED BLAKE-256

ACCELERATOR AND THE EXISTING BLAKE-256 ARCHITECTURES.

Device Reference
Freq. Area #Cycle/ Throughput Area Eff.

(MHz) (Slice) Hash (Mbps) (Mbps/slice)

Virtex 5

[5] 372 312* 844 225 0.72

[6] 118 1,118 40 1,510 1.35

[7] 115 1,660 22 2,676 1.61

Proposed 218 21,867 1 111,616 5.10

Virtex 6

[8] 155 267* 370 214.4 0.80

[9] 274 1,182 117 118.7 1.01

[10] 349 1,184 50 150.9 3.02

Proposed 246 22,791 1 125,952 5.53
* : One Block RAM (BRAM) is normalized to 128 slices, where [5] and [8]
use 2 and 1 BRAM, respectively.

block mechanisms (NGB and NCB). The accuracy of the pro-
posed BLAKE-256 accelerator is verified on the Xilinx Zynq
UltraScale+ MPSoC ZCU102 FPGA. Experimental results on
several different FPGA boards prove that the proposed accelerator
is significantly better throughput and area efficiency than existing
BLAKE-256 architectures.

ACKNOWLEDGMENT

This work was supported by the Japan Science and Technology
Agency (JST) under a Strategic Basic Research Programs Precur-
sory Research for Embryonic Science and Technology (PRESTO)
under Grant JPMJPR20M6.

REFERENCES

[1] P. Li, J. Meng, and Z. Sun, “A new jpeg encryption scheme using adaptive
block size,” in Advances in Intelligent Information Hiding and Multimedia
Signal Processing, J.-S. Pan, J. Li, O.-E. Namsrai, Z. Meng, and M. Savić,
Eds. Singapore: Springer Singapore, 2021, pp. 140–147.

[2] I. H. Abdulqadder, S. Zhou, D. Zou, I. T. Aziz, and S. M. A. Akber,
“Bloc-sec: Blockchain-based lightweight security architecture for 5g/b5g
enabled sdn/nfv cloud of iot,” in 2020 IEEE 20th International Conference
on Communication Technology (ICCT), 2020, pp. 499–507.

[3] M. Iavich, G. Iashvili, S. Gnatyuk, A. Tolbatov, and L. Mirtskhulava,
“Efficient and secure digital signature scheme for post quantum epoch,”
in Information and Software Technologies, Cham: Springer International
Publishing, 2021, pp. 185–193.

[4] Decred-secure. adaptable. sustainable. Accessed: Feb. 18, 2022. [Online].
Available: https://www.decred.org

[5] J.-L. Beuchat, E. Okamoto, and T. Yamazaki, “Compact implementations
of blake-32 and blake-64 on fpga,” in 2010 International Conference on
Field-Programmable Technology, 2010, pp. 170–177.

[6] B. Baldwin, A. Byrne, L. Lu, M. Hamilton, N. Hanley, M. O’Neill, and
W. P. Marnane, “Fpga implementations of the round two sha-3 candidates,”
in 2010 International Conference on Field Programmable Logic and Appli-
cations, 2010, pp. 400–407.

[7] M. Knezevic, K. Kobayashi, J. Ikegami, S. Matsuo, A. Satoh, n. Kocabas,
J. Fan, T. Katashita, T. Sugawara, K. Sakiyama, I. Verbauwhede, K. Ohta,
N. Homma, and T. Aoki, “Fair and consistent hardware evaluation of
fourteen round two sha-3 candidates,” IEEE Transactions on Very Large
Scale Integration (VLSI) Systems, vol. 20, no. 5, pp. 827–840, 2012.

[8] J.-P. Kaps, P. Yalla, K. K. Surapathi, B. Habib, S. Vadlamudi, and S. Gurung,
“Lightweight implementations of sha-3 finalists on fpgas,” in The Third SHA-
3 Candidate Conference, no. 60, 2012, pp. 1–17.

[9] S. Kerckhof, F. Durvaux, N. Veyrat-Charvillon, F. Regazzoni, G. M.
de Dormale, and F.-X. Standaert, “Compact fpga implementations of the
five sha-3 finalists,” in International Conference on Smart Card Research
and Advanced Applications. Springer, 2011, pp. 217–233.

[10] N. At, J.-L. Beuchat, E. Okamoto, s. San, and T. Yamazaki, “Compact
hardware implementations of chacha, blake, threefish, and skein on fpga,”
IEEE Transactions on Circuits and Systems I: Regular Papers, vol. 61, no. 2,
pp. 485–498, 2014.

[11] E. Biham and O. Dunkelman, “A framework for iterative hash functions—
haifa,” Computer Science Department, Technion, Tech. Rep., 2007.


