How can hardware skip execution of large amount of instructions ?
Yasuhiko NAKASHIMA, Kyoto Univ./PRESTO,JST

Modern commercial microprocessors have successfully achieved high performance with
superscalar or VLIW technique, which extracts ILP (Instruction Level Parallelism) in programs. But
these widely used techniques are addressing serious problems such as power dissipation and

memory barrier. Consequently, it becomes impossible to gain more performance on conventional (). Joop if (F(i, j)) {
programs with only ILP in the next decade. The sample program shown in the right side has a loop k = P(i, j);
and a recursion that are complexly nested each other, so general parallelization technique can not f(T(k) || k==0)re

be applied. This research focuses on how hardware can skip execution of large amount of
instructions while producing correct results. In fact, the main processor can get correct results of the
sample program by executing only a tenth part of instructions that should be executed on normal

else R(i, j);

}

turn true;

processors. This proposal employs dynamic early-computation and reuse of regions, and makes the return false;

point that neither binary-annotation nor recompilation is required.

1. Overview

f
ABI (Application Binary Interface) helps enlarging regions: Distinguished by Stack-Pointer A/B/Cinfout Data area
Local variables can be excluded from the relations between
inputs and outputs of each region with the help of ABI. S I TV
Consequently, the number of input variables to be verified and the
number of output variables to be written are respectively minimized = s SP(in B)
without additional special purpose instructions. Cinfout
e —Hargs[retval. B [sP(in A)
Bin {Bout
Multilevel memoizing helps enlarging regions: Function-8 AinTBo B/Cinfour) JLocalsA] | Stackarea
Essential inputs and outputs of nested inner regions are Function-A

simultaneously memoized while executing outer region, and

(a) Functions and Loops

(b) Memory M@

Speculative Thread

(with predicted IN)

d

g
promising regions are selected for future reuse and early- I y\oi} 2
. & o &
computation. L S Main Thread
E $"\\ \,\\ call / bkw-taken———» call / bkw-taken———»
mnays '
:bkw taken 00(?‘ é’,\\ return / end return/en
Dedicated main thread is free from speculative execution: : = endI Q@& Record INOUT .
Speculative threads execute promising regions with predicted Povelenz 0P ™ =

inputs and maintain reusable sets of input and output in a tree

call /
Snot-taken

bkw-taken

aliate IN and Reuse OT

(With min

imum cost)

structure. Main thread can reuse these sets with minimum input |
test. ~«—— return
Regions detected by Main Thread Multithreading and Region-Reuse
2. ExecutionmiVicdeE]
Combination of input-history, input-prediction, speculation, e ABCDEF\0
. . . i strlen(str) char *str;
memoization and region-reuse X T o
: Char *S; : CF Type Addr #OTO #l #2R0#3 CF TypeAddr #0 #1 #2 #3 CF Type Addr #0 #1#2#3 Type Type Addr_#0 #1 #2:R0_#3 Type
for (s=str; *s; +4s); | | sub | 0|M 124344 by ID fsa600- 11— Return =T~ Poooooos] -]
return (s - str); Head 1111 m 171 em.pou10000 0 0 o g O il MBI Value | o]0 0
Each thread memoizes the input and output of each region fstRecord andRecord 1 fecord “‘“ IstRecord nd
H initi H H H ABCDEFG\0
(?|er|veo'| from the top .address of the initially assigned region into a mie ot call tren(0001000C) pocpiren retum()
linear list (16 bytes with mask * 64 records) corresponding to each conp RbO i . —— . — — —t
of the multilevel regions B N et Rt 5 ol B e o i B et i : | A 5 5 I
ST N L . inc R é
When a region is finished, corresponding linear list is folded into ldb [Rs]->Rb | e Memoimaasates
an associative memory (16 bytes with mask * 64 lines) that i Jrea foor . . ’ g Ve
: H oo i e #0=454600-- = Reuse
t | athS as a tree sub Rs, RO- >R0 : Head 00010000 00010010
represen S severa p . return : Top=strlen #3=41424344 R G s
1 R 0=0001000C 2 3 Return Value
_______________________________ #0=45464700 = Reuse
Linear list (Pat. 2004-258905, 355397)
Reg./mem. read before written is memorized as input.
Reg./mem. read after written is ignored.
Reg./mem. written is memoized as output. Main Thread Speculative Thread

Local reg./mem. is ignored. (determined by stack-pointer)

4way 32K B,64B /lia
10cyc|e/m|ss

100cycle/miss

4way 2M B,64B/lie

Shared associative memory (Pat. 2005-92354) ' roa,Memoy\, KB %:—"“</\
Hashing technique is not applicable because valid-byte-mask is : I 5 P
specified by valid-data itself. The edges hold valid-byte-mask and
valid-data, and the nodes hold the block address to be referred \\5
next. = ==--SSl N\

Stride-based Predictian A — o> R ') o

Hybrid structure of CAM and RAM (Pat. 2004-176140, ROy | " storys | |)\0?Q A \0&%
266056) B e e S

The edges are held in CAM, and the nodes are held in f;a%ﬁ:g QE'E, History#s . g &Q@Eé oé&cb

RAM. If a traversal encounters at a point where the tree
structure has no more branch, further reg./mem. are
guaranteed as not-overwritten. The path can be reused
without further traversal.

History
P EL\

°

Raal CAM

3. Evaluaticonpwita

Large-scale accelerator for simulating associative search

288/144 bits with masks * 256K/512K entries

PCI bus interface, 1 usec/search

900 times faster than software

It accelerates the performance simulator of this proposal by 90 times.

spec95 spec2k
1-thread max./ave. 28%/3% 52%/6% speedup
4-thread max./ave. 158%/28% 150%/20% speedup

Promising region contains average hundreds of instructions.
The hitratio of shared L2-cache is greatly improved.

R elaying mechanism between speculative threads
(Pat. 2004-324348, 347124)

P artitioning of associative memory for high-speed and low-power
(Pat. 2005-234806)

Base: noSPs, 2-way SS SPARC

1K-DIV: 3 SPs, 1KB associative memory * 16 blocks (red bar)

4K-DIV: 3 SPs, 4KB associative memory * 16 blocks

256K: 3 SPs, 4MB associative memory (upper bound)

(Normalized by cycles with neither reuse nor speculative threads)

4. FeasibilityAStiy,

S pecial purpose CAM for high-frequency (Pat. 2005-234806)

Search & write function guarantees that at most one match-line is
asserted. Consequently, priority encoder and address decoder can be
omitted. Search & write is accelerated by sharing bit-lines between
comparand-data and write-data.

Search & read function used for logging matched data is accelerated
by duplicating mask-bits between CAM part and RAM part.

Above special purpose 1KB associative memory is designed with
0.18um rule, and operates in 1.6ns under HSPICE simulator.

\\ XCK1 /
\ \\ XCK2 /

\ AN XCK3 /

AM-BL pr&ch

for RAM-READ

< Select one from empty entries ><\\E nable target ent}y—
It costs as 64bit-addr.
RAM/CAM-wLN_for WRITE
for R/W

RAM EN/REN/SEN

1.10

1.00 —

0.90 —

0.80

0.70 —

0.60 —T

0.50 — | —
0.40 — — H
0.30 —
- D exec D L1-miss
0.20 — M Rtest M L2-miss
] O mtest [Rw-miss
0.10 — L .
4 Bae 1K K K &K 256K write
0.00 = MW | noWw DIV IIZ]V noW
£ £ £ = ¥ a £ 5
E] £ z g 2 3 2 5
4 3 g 2 g 2 £ =
2 - - s @ ~ : s
- =] N al
Search/Write Write Write
-
>) . CAM = RAM
&2 — 2
[=x .l =< »| Bjt Line w Bit Line
9L &
o . .
» O >
A
P —t o
Q

Nne Vi

Read Read Read
Reuse Buffer with General Purpose CAM (One cycle for Search, Write, and Read)

Search&Write Write
S 3[4 cam =7 RAM =
S - 3 > = > =
o - = »| BitLine w »| BitLine @©
@ . 5 > a - @
o R - . - :
- 3 - -

NN

Search&Read
Reuse Buffer with Special Purpose CAM (One cycle for Search&Write and Search&Read)

XK1 .rqg

MATCH 4 lC 7]

gsm

ALLRA ’% ALLEB

XCK4.

