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Modern commercial microprocessors have successfully achieved high performance with
superscalar or VLIW technique, which extracts ILP (Instruction Level Parallelism) in programs. But
these widely used techniques are addressing serious problems such as power dissipation and

memory barrier. Consequently, it becomes impossible to gain more performance on conventional (). Joop if (F(i, j)) {
programs with only ILP in the next decade. The sample program shown in the right side has a loop k = P(i, j);
and a recursion that are complexly nested each other, so general parallelization technique can not f(T(k) || k==0)re

be applied. This research focuses on how hardware can skip execution of large amount of
instructions while producing correct results. In fact, the main processor can get correct results of the
sample program by executing only a tenth part of instructions that should be executed on normal

else R(i, j);

}

turn true;

processors. This proposal employs dynamic early-computation and reuse of regions, and makes the return false;

point that neither binary-annotation nor recompilation is required.
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Reg./mem. read before written is memorized as input.
Reg./mem. read after written is ignored.
Reg./mem. written is memoized as output. Main Thread Speculative Thread

Local reg./mem. is ignored. (determined by stack-pointer)

4way 32K B,64B /lia
10cyc|e/m|ss

100cycle/miss

4way 2M B,64B/lie

Shared associative memory (Pat. 2005-92354) ' roa,Memoy\, KB %:—"“</\
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The edges are held in CAM, and the nodes are held in f;a%ﬁ:g QE'E, History#s . g &Q@Eé oé&cb

RAM. If a traversal encounters at a point where the tree
structure has no more branch, further reg./mem. are
guaranteed as not-overwritten. The path can be reused
without further traversal.
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3. Evaluaticonpwita

Large-scale accelerator for simulating associative search

288/144 bits with masks * 256K/512K entries

PCI bus interface, 1 usec/search

900 times faster than software

It accelerates the performance simulator of this proposal by 90 times.

spec95 spec2k
1-thread max./ave. 28%/3% 52%/6% speedup
4-thread max./ave. 158%/28% 150%/20% speedup

Promising region contains average hundreds of instructions.
The hitratio of shared L2-cache is greatly improved.

R elaying mechanism between speculative threads
(Pat. 2004-324348, 347124)

P artitioning of associative memory for high-speed and low-power
(Pat. 2005-234806)

Base: noSPs, 2-way SS SPARC

1K-DIV: 3 SPs, 1KB associative memory * 16 blocks (red bar)

4K-DIV: 3 SPs, 4KB associative memory * 16 blocks

256K: 3 SPs, 4MB associative memory (upper bound)

(Normalized by cycles with neither reuse nor speculative threads)

4.  FeasibilityAStiy,

S pecial purpose CAM for high-frequency (Pat. 2005-234806)

Search & write function guarantees that at most one match-line is
asserted. Consequently, priority encoder and address decoder can be
omitted. Search & write is accelerated by sharing bit-lines between
comparand-data and write-data.

Search & read function used for logging matched data is accelerated
by duplicating mask-bits between CAM part and RAM part.

Above special purpose 1KB associative memory is designed with
0.18um rule, and operates in 1.6ns under HSPICE simulator.
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