
  Modern commercial microproces s ors  have s ucces s fully achieved high performance with 
superscalar or V LIW technique, which extracts  ILP  (Instruction Level P arallelism) in programs.  B ut 
these widely used techniques  are address ing serious  problems such as  power diss ipation and 
memory barrier. C onsequently, it becomes imposs ible to gain more performance on conventional 
programs with only ILP  in the next decade.  T he sample program shown in the right s ide has  a loop 
and a recurs ion that are complexly nested each other, so general parallelization technique can not 
be applied.  T his  res earch focus es  on how hardware can s kip execution of large amount of 
instructions  while producing correct results .  In fact, the main processor can get correct results  of the 
sample program by executing only a tenth part of instructions  that should be executed on normal 
processors .  T his  proposal employs  dynamic early-computation and reuse of regions , and makes  the 
point that neither binary-annotation nor recompilation is  required.

AB I (Application B inary Interface) helps  enlarging regions : 
  Local variables  can be excluded from the relations  between 
inputs  and outputs  of each region with the help of AB I.   
C onsequently, the number of input variables  to be verified and the 
number of output variables  to be written are respectively minimized 
without additional special purpose instructions .

Multilevel memoizing helps  enlarging regions :
  E s s ential inputs  and outputs  of nes ted inner regions  are 
s imultaneous ly memoized while executing outer region,  and 
promis ing regions  are s elected for future reus e and early-
computation.

Dedicated main thread is  free from speculative execution:
  S peculative threads  execute promis ing regions  with predicted 
inputs  and maintain reusable sets  of input and output in a tree 
structure.  Main thread can reuse these sets  with minimum input 
test.

Linear lis t (P at. 2004-258905, 355397)
   R eg./mem. read before written is  memorized as  input.
   R eg./mem. read after  written is  ignored.
   R eg./mem. written is  memoized as  output.
   Local reg./mem. is  ignored. (determined by stack-pointer)

S hared associative memory (P at. 2005-92354)
  Hashing technique is  not applicable because valid-byte-mask is  
specified by valid-data itself.   T he edges  hold valid-byte-mask and 
valid-data, and the nodes  hold the block address  to be referred 
next.

Linear lis t (P at. 2004-258905, 355397)
   R eg./mem. read before written is  memorized as  input.
   R eg./mem. read after  written is  ignored.
   R eg./mem. written is  memoized as  output.
   Local reg./mem. is  ignored. (determined by stack-pointer)

S hared associative memory (P at. 2005-92354)
  Hashing technique is  not applicable because valid-byte-mask is  
specified by valid-data itself.   T he edges  hold valid-byte-mask and 
valid-data, and the nodes  hold the block address  to be referred 
next.

Hybrid structure of C AM and R AM (P at. 2004-176140, 
266056)
  T he edges  are held in C AM, and the nodes  are held in 
R AM. If a traversal encounters  at a point where the tree 
s tructure has  no more branch, further reg./mem. are 
guaranteed as  not-overwritten.  T he path can be reused 
without further traversal.

  E ach thread memoizes  the input and output of each region 
derived from the top address  of the initially ass igned region into a 
linear lis t (16 bytes  with mask * 64 records) corresponding to each 
of the multilevel regions .  
  When a region is  finished, corresponding linear lis t is  folded into 
an as s ociative memory (16 bytes  with mas k * 64 lines ) that 
represents  several paths  as  a tree.

C ombination of input-his tory,  input-prediction,  s peculation,  
memoization and region-reuse
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Large-scale accelerator for s imulating associative search

  288/144 bits  with masks  * 256K /512K  entries
  P C I bus  interface, 1 usec/search
  900 times  faster than software
  It accelerates  the performance s imulator of this  proposal by 90 times .

S pecial purpose C AM for high-frequency (P at. 2005-234806)

S earch & write function guarantees  that at most one match-line is  
asserted.  C onsequently, priority encoder and address  decoder can be 
omitted.  S earch & write is  accelerated by sharing bit-lines  between 
comparand-data and write-data.

S earch & read function used for logging matched data is  accelerated 
by duplicating mask-bits  between C AM part and R AM part.

Above s pecial purpos e 1K B  as s ociative memory is  des igned with 
0.18um rule, and operates  in 1.6ns  under HS P IC E  s imulator.

    　　　　　　　      spec95 　  spec2k
1-thread max./ave.    28%/ 3%     52%/ 6%  speedup
4-thread max./ave.  158%/28%  150%/20% speedup

P romis ing region contains  average hundreds  of instructions .  
T he hit ratio of shared L2-cache is  greatly improved.

R elaying mechanism between speculative threads
                                (P at. 2004-324348, 347124)
P artitioning of associative memory for high-speed and low-power
                                (P at. 2005-234806)
B ase:     no S P s , 2-way S S  S P AR C
1K -DIV :  3 S P s , 1K B  associative memory * 16 blocks  (red bar)
4K -DIV :  3 S P s , 4K B  associative memory * 16 blocks
256K :     3 S P s , 4MB  associative memory (upper bound)

(Normalized by cycles  with neither reuse nor speculative threads)

exec R test Mtest write L1-miss L2-miss R W-miss exec
83.equake 0.66 0.00 0.00 0.00 0.05 0.28 0.00 0.31
88.ammp 0.08 0.00 0.00 0.00 0.04 0.88 0.00 0.06
02.swim 0.59 0.00 0.00 0.00 0.16 0.26 0.00 0.18
04.hydro2d 0.52 0.00 0.00 0.00 0.03 0.45 0.00 0.27
53.perlbmk 0.95 0.00 0.00 0.00 0.01 0.00 0.04 0.80
56.bzip2 0.79 0.00 0.00 0.00 0.06 0.16 0.00 0.36
24.m88ks im 0.89 0.00 0.00 0.00 0.00 0.07 0.03 0.58
47.vortex 0.80 0.00 0.00 0.00 0.09 0.02 0.10 0.59
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