
 Modern commercial microproces s ors have s ucces s fully achieved high performance with
superscalar or V LIW technique, which extracts ILP (Instruction Level P arallelism) in programs. B ut
these widely used techniques are address ing serious problems such as power diss ipation and
memory barrier. C onsequently, it becomes imposs ible to gain more performance on conventional
programs with only ILP in the next decade. T he sample program shown in the right s ide has a loop
and a recurs ion that are complexly nested each other, so general parallelization technique can not
be applied. T his res earch focus es on how hardware can s kip execution of large amount of
instructions while producing correct results . In fact, the main processor can get correct results of the
sample program by executing only a tenth part of instructions that should be executed on normal
processors . T his proposal employs dynamic early-computation and reuse of regions , and makes the
point that neither binary-annotation nor recompilation is required.

AB I (Application B inary Interface) helps enlarging regions :
 Local variables can be excluded from the relations between
inputs and outputs of each region with the help of AB I.
C onsequently, the number of input variables to be verified and the
number of output variables to be written are respectively minimized
without additional special purpose instructions .

Multilevel memoizing helps enlarging regions :
 E s s ential inputs and outputs of nes ted inner regions are
s imultaneous ly memoized while executing outer region, and
promis ing regions are s elected for future reus e and early-
computation.

Dedicated main thread is free from speculative execution:
 S peculative threads execute promis ing regions with predicted
inputs and maintain reusable sets of input and output in a tree
structure. Main thread can reuse these sets with minimum input
test.

Linear lis t (P at. 2004-258905, 355397)
 R eg./mem. read before written is memorized as input.
 R eg./mem. read after written is ignored.
 R eg./mem. written is memoized as output.
 Local reg./mem. is ignored. (determined by stack-pointer)

S hared associative memory (P at. 2005-92354)
 Hashing technique is not applicable because valid-byte-mask is
specified by valid-data itself. T he edges hold valid-byte-mask and
valid-data, and the nodes hold the block address to be referred
next.

Linear lis t (P at. 2004-258905, 355397)
 R eg./mem. read before written is memorized as input.
 R eg./mem. read after written is ignored.
 R eg./mem. written is memoized as output.
 Local reg./mem. is ignored. (determined by stack-pointer)

S hared associative memory (P at. 2005-92354)
 Hashing technique is not applicable because valid-byte-mask is
specified by valid-data itself. T he edges hold valid-byte-mask and
valid-data, and the nodes hold the block address to be referred
next.

Hybrid structure of C AM and R AM (P at. 2004-176140,
266056)
 T he edges are held in C AM, and the nodes are held in
R AM. If a traversal encounters at a point where the tree
s tructure has no more branch, further reg./mem. are
guaranteed as not-overwritten. T he path can be reused
without further traversal.

 E ach thread memoizes the input and output of each region
derived from the top address of the initially ass igned region into a
linear lis t (16 bytes with mask * 64 records) corresponding to each
of the multilevel regions .
 When a region is finished, corresponding linear lis t is folded into
an as s ociative memory (16 bytes with mas k * 64 lines) that
represents several paths as a tree.

C ombination of input-his tory, input-prediction, s peculation,
memoization and region-reuse

1. Overview1. Overview

2. E xec ution Model2. E xec ution Model

How c an hardware s kip exec ution of large amount of ins truc tions ?How c an hardware s kip exec ution of large amount of ins truc tions ?

Y as uhiko NA K A S HIMA , K yoto Univ./P R E S TO,J S TY as uhiko NA K A S HIMA , K yoto Univ./P R E S TO,J S T

L oop

Globals

Locals-A

Args

Ain Aout

Bin Bout

Cin Cout

Ret.Val.

Globals

(b) Memory Map

Locals-A

Args Ret.Val.

L IMIT

S P (in B)

S P (in A)

Cin/out

A/B/Cin/out

B/Cin/out

Data area

(a) F unctions and Loops

Stack area

L oop-C

F unction-B

F unction-A

Locals-B Locals-B

Distinguished by Stack-Pointer

Multithreading and Region-ReuseRegions detected by Main Thread

loop#1 (c
an’ t

detect)

su
bro

utin
e

(L
evel-2

)

return

loop#2 (L
evel-1

)

loop#N (L
evel-1

)

call
Main T hread

R ecord I N/OUT

call / bkw-taken
V alidate I N and R euse OUT

call / bkw-taken

return / end

end

end

Speculative T hread

R ecord I N/OUT

call / bkw-taken (with predicted IN)

return / end

(with minimum cost)

bkw-taken

bkw-taken

not-taken

2nd-R ecord

R B in matches

#0=454600--

1st-R ecord

#0=45464700

Mem.
Sub.
Head

T ype

s t r l en:
 mov e R0- >Rs
 l d. b [Rs] - >Rb
 c omp Rb, 0
 beq end
l oop:
 i nc Rs
 l d. b [Rs] - >Rb
 c omp Rb, 0
 bneq l oop
end:
 s ub Rs , R0- >R0
 r et ur n

strlen(str) char *str;
{
 char *s;
 for (s = str; *s; ++s);
 return (s - str);
}

strlen
1 1 1 1

#0: T op #1 #2: R 0 #3
-- 0001000C

0.. 1 1 1 1 0..
--

T ype

0..

#0 #1 #2 #3

0.. 0.. 1 1 1 1

A ddr

00010000

A B C D E F \0
41 42 43 44 45 46 00

--

R B in
T ype

end

call strlen(0001000C)

Return
Value

T ype #0 #1 #2: R 0 #3
-- 00000006

0.. 1 1 1 1 0..
--

A ddr

R B out

0..
--

1st-R ecord4th 2nd

A ddr

41424344-- --

Mem.

T ype

0..

#0 #1 #2 #3

0.. 0..1 1 1 0

A ddr

00010010
--

3rd-R ecord

454600-- ----

Mem.
Sub.
Head

strlen
1 1 1 1

-- 0001000C

0.. 1 1 1 1 0..
--

0.. 0.. 0.. 1 1 1 1
00010000

A B C D E F G \0
41 42 43 44 45 46 47 00

--

call strlen(0001000C)

Return
Value

-- 00000007

0.. 1 1 1 1 0..
--

0..
--

41424344-- --

Mem.
0.. 0.. 0..1 1 1 1

00010010
--45464700 ----

return(6)

return(7)

end end

T ype

end

T op=str len

Mem.
00010000

Mem.
00010010

R 0=0001000C

#3=41424344

R 0=6

R 0=7

R euse

R euse

Sub.
Head

Memoized as a tree

1 2 3
4

5

C F C F C F

1

1 0

0 0

0

Return Value

Return Value

loop#6

loop#4

loop#5

loop#2

loop#3

Sear ch

Stor e SB in

R euse

R B in

R B out

Sear ch
R euse

16K B Shar ed
A ssociative B uffer

Status of 256 r egions

H istor y#4

H istor y#5

R B in H istor y#2

R B in
H istor y#3

H istor y#1

H it

H it

Usefulness

loop#4

loop#5

SB out

L 1 cache L 1 cacheShar ed L 2 cache

Pr edicted inputs

L ocal M emory

loop#7

loop#8

Str ide-based Pr ediction

(16B *max 256)

(16B *max 256)

32K B

4way 32K B ,64B /line
10cycle/miss

4way 2M B ,64B /line
100cycle/miss

M ain T hr ead Speculative T hr ead

Large-scale accelerator for s imulating associative search

 288/144 bits with masks * 256K /512K entries
 P C I bus interface, 1 usec/search
 900 times faster than software
 It accelerates the performance s imulator of this proposal by 90 times .

S pecial purpose C AM for high-frequency (P at. 2005-234806)

S earch & write function guarantees that at most one match-line is
asserted. C onsequently, priority encoder and address decoder can be
omitted. S earch & write is accelerated by sharing bit-lines between
comparand-data and write-data.

S earch & read function used for logging matched data is accelerated
by duplicating mask-bits between C AM part and R AM part.

Above s pecial purpos e 1K B as s ociative memory is des igned with
0.18um rule, and operates in 1.6ns under HS P IC E s imulator.

 　　　　　　　 spec95 　 spec2k
1-thread max./ave. 28%/ 3% 52%/ 6% speedup
4-thread max./ave. 158%/28% 150%/20% speedup

P romis ing region contains average hundreds of instructions .
T he hit ratio of shared L2-cache is greatly improved.

R elaying mechanism between speculative threads
 (P at. 2004-324348, 347124)
P artitioning of associative memory for high-speed and low-power
 (P at. 2005-234806)
B ase: no S P s , 2-way S S S P AR C
1K -DIV : 3 S P s , 1K B associative memory * 16 blocks (red bar)
4K -DIV : 3 S P s , 4K B associative memory * 16 blocks
256K : 3 S P s , 4MB associative memory (upper bound)

(Normalized by cycles with neither reuse nor speculative threads)

exec R test Mtest write L1-miss L2-miss R W-miss exec
83.equake 0.66 0.00 0.00 0.00 0.05 0.28 0.00 0.31
88.ammp 0.08 0.00 0.00 0.00 0.04 0.88 0.00 0.06
02.swim 0.59 0.00 0.00 0.00 0.16 0.26 0.00 0.18
04.hydro2d 0.52 0.00 0.00 0.00 0.03 0.45 0.00 0.27
53.perlbmk 0.95 0.00 0.00 0.00 0.01 0.00 0.04 0.80
56.bzip2 0.79 0.00 0.00 0.00 0.06 0.16 0.00 0.36
24.m88ks im 0.89 0.00 0.00 0.00 0.00 0.07 0.03 0.58
47.vortex 0.80 0.00 0.00 0.00 0.09 0.02 0.10 0.59

18
3.

eq
ua

ke

18
8.

am
m

p

10
2.

sw
im

10
4.

hy
dr

o2
d

25
3.

pe
rlb

mk

25
6.

bz
ip

2

12
4.

m
88

ks
im

14
7.

vo
rte

x

0.00

0.10

0.20

0.30

0.40

0.50

0.60

0.70

0.80

0.90

1.00

1.10

exec

R test

Mtest

write

L1-miss

L2-miss

R W-miss

B ase 1K 1K 1K 4K 256K

MW noW DIV DIV noW

Valid bits

Em
pty Detector

CAM

Match Line

Bit Line

M
ask Bits

Priority Encoder

Address Decoder

RAM

Word Line

Bit Line

Reuse Buffer with General Purpose CAM (One cycle for Search, Write, and Read)

Search/Write Write Write

Read Read Read

Reuse Buffer with Special Purpose CAM (One cycle for Search&Write and Search&Read)

Valid bits

Em
pty Detector

CAM

Match Line

Bit Line

M
ask Bits

RAM

Word Line

Bit Line

Search&Write Write

Search&Read

M
ask Bits

RAM Read/WriteMatch-line

CAM Write

Empty-entry

Write/Search

Ma
tc
h-
li
ne
 A
LL
0

X C K 1

X C K 2

X C K 3

X C K 4

M A T C H -L I NE

A L L -0

R A M -W L

R A M /C A M -W L

for R A M -R E A D

for W R I T E

R A M -W E N/R E N/SE N

R A M -B L pr ech

Select one fr om empty entr ies E nable tar get entr y

for R /W

I t costs as 64bit-addr .

3. E valuation with R eal C A M3. E valuation with R eal C A M

4. F eas ibility S tudy4. F eas ibility S tudy

